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The theory of probability is a classical branch of mathematics,
and it has many applications of physics and other branch of mathe-
matics (see [ 2], [3)).

There are a few examples of using probability theory method
in the theory of asymptotic distribution mod 1, and it seems quite
natural to apply the similar procedure to the theory of uniform di-
stribution of sequences of integers mod m, where m is an integer >
2, which was first introduced by I. Niven (7 ] in 1961.

In the present paper, we apply the results of probability theory
in order to investigate the theory of uniform distribution of sequence
of integers mod m. (for the elementary proof see (4))

Let Z ¥ be the set of all rational positive integers. Let Z be the
set of all rétional integers. Let F be the finite algebra of all sub-
sets of Z *and let R be the set of all real numbers.Let A= {1, 2,

N} Z Define the function P : F — R by
P(E) N‘ |ENA|
—00 N (provided the limit exists),



Theorem 1. (Z* F,P ) is a (finite) probability space.

Proof. To show (Z*,F,P ) is a (finite) probability space, we
need prove that
(1) f EcF then P(E)> 0 ,
(2) P(¢)=O,P(Z+):l and
G) ®*E,eF(i=1,2,,n) and E,NE;=¢ , provided

iﬂFj, then P(UEi)— ZP(E{)
(1) and (2) are clear. For the part of (3), we shall use mathematical

induction on n. Let n=2, then

Y I(ElﬂA)U(EeﬂA)l . |E.NAHE.NA |
= 1im = llm
N—oo N N —o0 N ?

because (E,NA)YN(E.NA)=E NE,=¢.

Hence P(E,UE,)=P(E, )+P(E ). -
Now we suppose (3) is true for n-1, i.e. P( U E)= Z P(El)

Let F= (J E; then U E,=FUE, . By the preceding

i=1 i=1

result, we have P(FUE,)=P(F)+P(E.,) = n:‘_‘,lP(Ei *+P(E.)
i=1
:-i P(E,).

=1

i.e. P( UEi)— ZP(Ex)

i=1

Therefore ( Z* ,F ,P ) is a (finite) probability space.
A random variable in a probability space (Q,F ,P ) is a real

valued function defined on  such thatfweQ : f (w)<r ,reR} &F
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According to preceding definition, we may consider the sequence of
integers {f(n)} suchthat {n:f(n)<<k,kcZ}cF (%)
is a random variable in the probability space ( Z* ,F,P ). From now
on, the random variable in the probability space (Z* ,F,P ) will
mean the sequence of integers with the property (¥).

Theorem 2. Let {f (n)} be a random variable in the probability
space (Z* ,F,P ). Thenforallm,k = Z ,
(1) {n€Z*:f(n)=k} eF,
2 {n€Z*:f(n)<k}eF,
3) fneZ*:f(n)>m}eF
(4) In€Z*:.f(n)>m} F , and
(5) {[neZ*:k<f(n)<m}eF.

Proof. (1) Since {n&Z%*:f(n)=k}

= {neZ*:f(n)<k+1} - {n€Z*:f(n) <.} ,we have

[neZ*:f(n)=k}eF.

The relation (2) through (5) can be shown in a similar way.
Definition. Let {f (n)}, {f.(n)} , c-eeeeeeeee. , {fx(n)} bek
random variables in (Z+ F /P ). {f(n)} , {f(n)}, e, s

{fu(n)} are said to be independent if
P({neZ*|f,(n)<m,, -, fu(n)<m.} )
k
= T P {neZ*|fi(n)<m;}).

i=1

Definition Let {f(n)} be a random variable in ( Z* ,F, P )
and h(k)=P({neZ*:f(n) <k} ), (k=0,+1,+2, ).
h(k) is called the distribution function of the random variable{f(n)}.

By using the result of probability theory on distribution func-
tion, we have

Theorem 3. h(k) is a nonnegative and monotonically increasing

function. Moreover h(k) (if properly extended) is continuous on the
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Theorem 4. Let {f(n)}be a random variable in( Z*+ F,P )
cd—a<f(n)y<a, Vn, Then
M(f)=J2, xdh(x)= lim —
- N oo N 1
Proof. Since —a<f(n)<a, WV¥n , andh(x)is the distri-
bution function of {f(n)} .h(a)=1 ,h(-a)=0 Now
Jraxdh(x)= "3 mP( {f(n)=m})

I——

£r 3
iti).

%

1

m=-—a41
= ¥ m 11m L[ {neZ* :f(n)=m}NA|
mh=aatl N
. 1 a—1
_Nllm N _"Zil m| {neZ:f(n)=m}NA|

—Nl—l>m i\l_I(f(l Y+HE(2)+--+f(N)).

By the preceding proof, we also have
Theorem 5. Let {f(n)} be a random variable, and let {f(n)}

assumes the values 0,1,2,..., m=-1. Let k=1,2 .- m-1. Then

X
J‘om lezzlmxdh(x)_ llm N Z ezzri—f(n)

where h(x) is the distribution function of the random variable {f(n)}.
Definition. Let {f(n)} be a random variable. {f(n)} is
uniformly distributed mod m, where m is a positive integer > 2, if
the distribution function of {f (n) (mod m) } is same as that of {n
(mod m) } . |
Theorem 6. Let {f(n)} be a random variable. ‘w{f(h)} is

uniformly distributed mod m if and only if

M ( ezniéum):()’vk:l’Q, .................. ,m_.l_
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Proof. Necessity. We have

K | x
M(e”‘;ﬁf‘"’): llm—f‘ E C““Ef(n).

N —00
Y IN n=1

Now by theotrem 5 we have also

M(eznigf(n) )= Jm=1 e kx/mdh(x) ,

where the h(x) is the distribution function of the random variable {f(n)
(mod m)} . As the distribution function of {f(n) (mod m)} in the
case of uniform distribution is the same as the distribution function
of {n (mod m) } , we have for k=1, 2, ..., m-1.
M ( ez:ril—;[ f(n ) =M ezzikn/m)
. 4 e ] —e2®i kN /m
:N.l_iglo ﬁezma ] — ezl k /m

l_ezzrikN/m 2
=0, for ll—e”“‘/m lg]l_ezrrik/mj .

For the proof of sufficiency, refer to (s J.

Theorem 7. Let {f,(n)}, {f.(n)}, - » {fx(n)} e

bounded random variables and independent, then

K k
M('JT fi(n)):;”- M ((fi(n)), and -
=1 =1
K K 1 where /i are integers
M E,fi“(n))_ilr, M(f; (n))’(positive).

Proof. This clearly follows from theorem 1 of (1) (p. 389) and
the fact that {f1(n)} is a random variable if {f;(n )} does.

Corollary. 8. Given {f,(n)}, {f.(n)}, «=--eoer, {f(n)}
are random variables. Let {f,(n) (mod m)} , {f,(n) (mod m) },
coos {f(n) (mod m)} are independent.

Then M (€Tt (hifam+hafa )+ "+hyfy(n) /m )
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k
=T M(eznihifi(n)/m )
i=1

fora11h1, hyy.o\o, h, =0,1,2,..., m-1,

Theorem 9. Given {f,(n)} , {f.(n)}, -----e- -, {fy(n)} are
random variables. Let {f,(n) (modm)} , {fo(n) (mod m)} ).

-» {fx(n) (mod m)} are independent. Suppose the random vari-

p.)

able {f,(n)} is uniformly distributed mod m. Then ‘the sum
(pointwise) of random variables {f,(n)+f,(n) +4------ +fe(n)}
is uniformly distributed mod m.

Proof. Since {f,(n)} is uniformly distributed mod m, we

have, by theorem 6,
.k
M(ezn’zat'(n)):()’ Vk:I’Z,.........’m._.l_

Moreover by the fact that {f,(n) (mod m)}, {f.(n) (modm)},
{fx (n) (mod m) }are independent. We also have

M( eziri(hl fy (n)+hofy(n)+° °+hkfk(n))/m)

k .
- T M(ezﬂihi/mfi(n)):() .

i=1

Hence {f,(n YL, ()4 ceeeeenees +fk=( n )} is uniformly distri-

buted mod m.

REFERENCES

1. M. Eisen, Introduction to Mathematical Probabilit;r Theory,
Prentice-Hall Inc., 1969,

2. M. Kac, Statistical Independence in Probability, Analysis and
Number Theory, Carus Monogramy No. 12, 1959,



BANRZBRERE  (19)

M. Kac, Probability and Related Topics in Physical Sciences,
Boalder Lectures in Applied Mathematics, Vol. 1.

L. Kuipers and Jau-shyong Shiue, Asymptotic Distribution mod m
of Sequences of Integers and the Notion of Independence I. to
appear.

L. Kuipers and A. J. Stam, On a General Form of the Weyl
Criterion in the Theory of Asymptotic Distribution, Proc. Japan
Acad., 45(1969), 530-540.

L. Kuipers, Some Aspects of the Theory of Asymptotic Distri-
bution Modulo 1, Bulletin de la Société Mathématique de Belgique,
XV(1963), 380-388.

I. Niven, Uniform Distribution of Integers, Trans. Amer.
Mathe. Soc., 98(1961), 52-61.

S. Uchiyama, On the Uniform Distribution of Sequences of In-

tegers, Proc. Japan Acad., 37(1961), 605-609.

Department of Mathematics

National Taiwan Normal University



