MULTIPLIERS ON SOME TOPOLOGICAL

LINEAR SPACES 在某些拓撲線性空間上之乘子

連明嬌

Prepared by Lien Ming-Chiao Directed by Prof. Hang-Ching Lai

Institute of Mathematics, National Tsing Hua University

1971

1. Introduction and preliminaries

This paper contains three sections. Section 2 is the main part of this paper, in which we prove a theorem related to isomorphism problem; that is: Let G_1 and G_2 be locally compact groups with left Haar measures, T be an one to one, bipositive linear transformation from $L^p(G_1)$ onto $L^p(G_2)$, 1 , and <math>T(f*g) = Tf*Tg whenever $f*g \in L^p(G_1)$, $T^{-1}(f*g) = T^{-1}f*T^{-1}g$ whenever $f*g \in L^p(G_2)$. Then G_1 and G_2 are topologically isomorphic. In this section, we set out some notations and definitions which remain standard throughout this paper.

1.2
$$L^p$$
 Spaces (1 $\leq p \leq \infty$)

Let G be a locally compact group with left Haar measure dx. If G is compact, dx is assumed to be normalized so that $\int_G dx = 1$. If

(50) 師大學報第十七期

G is locally compact Abelian, we denote \widehat{G} the dual group of G.

Let $L^p(G)$, $1 \le p < \infty$, be the Banach space of all p-th power absolute integrable functions with respect to dx, the norm of $L^p(G)$ is given by

$$\|f\|_{\mathbf{L}^{p}} = \|f\|_{p} = [\int G |f(x)|^{p} dx]^{\frac{1}{p}},$$

and $L^{\infty}(G)$ denotes the Banach space of all essential bounded functions and normed by

$$\|f\|_{L} \infty = \|f\|_{\infty} = \text{loc. ess. sup. } |f(x)|.$$

Denote by $C_o = C_o(G)$ the space of all continuous functions which vanich at infinity and by $C_c = C_c(G)$ the space of all continuous functions with compact supports. The topology of C_c is the topology of uniform convergence defined by restricting to with the norm $\|\cdot\|_{\infty}$. The topology of C_c is the topology obtained by regarding C_c as the internal inductive limit of its subspace

$$C_{c,k} = \left\{ f \in C_c : \text{supp } f \subset K \right\}$$
,

where K ranges over all the compact subsets of G and each of $C_{\rm c}$, k being regarded as a Banach space with the supremum norm.

We define the left and right translations by

$$\tau_a f(x) = f(a^{-1}x),$$

 $\rho_a f(x) = f(xa^{-1}).$

1.3 Convolutions

Let M = M(G) denote the space of all complex regular Borel measures on G with the weak topology σ (M, C_c), and $M_{bd} = M_{bd}(G)$ be

the subspace of M formed of those measures such that

$$\|\mu\| = \|\mu\|$$
 (G) $<\infty$.

For the space M_{bd} , together with this norm, is the dual of C_o . $M_L^p \text{ [resp. } M_R^p \text{] denotes the measures } \mu \in M \text{ such that } \| \mu^{*f} \|_p \leq \text{const.} \| f \|_p \text{ [resp. } \| f^* \mu \|_p \leq \text{const.} \| f \|_p \text{], for all } f \in C_c. \text{ If } \lambda$, $\mu \in M(G)$ and for any Borel subset E of G, we define

$$\lambda * \mu (E) \equiv \int_{G} \mu(s^{-1}E) d \lambda (s)$$

Convolution of function f and measure μ by

$$f * \mu (x) \equiv \int_{G} \Delta(y) f(xy^{-1}) d\mu(y)$$

and

$$\mu * f(x) \equiv \int_{\mathbf{G}} f(y^{-1} x) d\mu(y) ,$$

where \triangle (y) denote the modular function.

If f, g are functions, we define

$$f *g(x) = \int_{g} g(y^{-1} x) f(y) dy.$$

clearly,

$$\tau_a (f^*g) = \tau_a f^*g,$$

$$\rho_a (f^*g) = f^* \rho_a g.$$

1.4 Positive mappings

A mapping T from a function space into a function space is called positive, if $TF \ge 0$ almost everywhere whenever $f \ge 0$ almost

(52) 師大學報第十七期

everywhere. If T is an one-one onto mapping, T and T^{-1} are positive, we call T bipositive.

1.5 Multipliers

Let G be a locally compact group, X, Y be topological linear spaces of functions defined on G, then a continuous linear transformation T from X to Y is called a left (right) multiplier for the pair (X,Y) whenever T $\tau_s = \tau_s T(T \rho_s = \rho_s T)$ for each s \equiv G. If T is both a left and a right multiplier, then we call simply T a multiplier.

We denote the set of all left (right) multipliers for $(L^p(G))$, $L^p(G)$) by $M_{\ell}(L^p)$ [resp. $M_R(L^p)$] and the set of all multipliers for $(L^p(G), L^p(G))$ by $M(L^p), 1 \le p \le \infty$.

Denote by M_{ℓ} (L^p , L^q) [resp. M_R (L^p , L^q)] the set of all left (right) multipliers for (L^p , L^q), M (L^p , L^q) the set of all multipliers for (L^p , L^q), 1 < p, $q < \infty$.

2. Isomorphism theorems relate to multipliers

2.1 Introduction

Let G_1 and G_2 be locally compact (Hausdorff) groups, and $E(G_i)$ denote the function space over the group G_i .

The isomorphism problem consists of that at what conditions on the mapping of $E(G_1)$ onto $E(G_2)$ can deduce to the isomorphic topological groups G_1 and G_2 . First kawada [5] proved that if there

exists a bipositive isomorphism of $L^1(G_1)$ onto $L^1(G_2)$, then G_1 and G_2 are topologically isomorphic.

Wendel [10] [11] proved the isomorphic groups from the hypothesis that if there is a norm nonincreasing isomorphism of $L^{1}(G_{1})$ onto $L^{1}(G_{2})$. Later Edwards [2] consider the situation where the groups $G_{i}(i=1, 2)$ are compact and there exists a bipositive isomorphism of $L^p(G_1)$ onto $L^p(G_2)$ $(1 \le p < \infty)$ and proved under these conditions, the groups are topologically isomorphic. In Edwards[2], he asked whether the compact groups G, and G, are necessarily isomorphic if the bipositive is replace by isometry. The affirmative answer to this question was given by Strichartz [9] Parrott [7] proved the question for general locally compact groups G_1 and G_2 under the isometric transformation of $L^p(G_1)$ onto $L^p(G_2)$ $(1 \le p < \infty, p \ne 2)$ and some additional conditions which are necessary for the Lebesgue space L^p (Indeed, $L^p(G)$ needs not be an algebra if G is not compact). We ask that whether the Parrott's result holds if the isometry is replaced by bipositive. That is the same question that in Edwards[2], whether the locally compact groups ${\sf G}_1$ and ${\sf G}_2$ are necessarily isomorphic if we assume that there is an injective bipositive linear mapping from the Banach space $L^p(G_1)$ onto the Banach space $L^p(G_2)$. For this purpose we give the affirmative answer in this paper.

Some another isomorphic problems were given by Johnson [4], Gaudry [3] and Strichartz [8].

Johnson [4] showed on the bounded regular measure algebra under the isometric isomorphism. Gaudry [3] proved on the multiplier algebra $M(L^p)$ $1 \le p < \infty$ under the condition of isometric isomorphism and bipositive isomorphism.

2.2 The main theorem

(54) 師大學報第十七期

For convenient, we state the following

Lemma A: If T is a positive linear transformation of $L^p(G_1)$ into $L^p(G_2)$ ($1 \le p \le \infty$), then T is continuous.

Proof: We give the alternative proof of Brainerd and Edwards [1] as following: If T were not bounded, these would exist $\{f_n\}$ in $L^p(G_1)$ such that

$$\|f_n\|_{L^p(G_1)} \le 1$$
 and $\|Tf_n\|_{L^p(G_2)} \ge n^{3}$

Since T is positive, $|Tf_n| < T|f_n|$, and so we may assume that $f_n \ge 0$. The series $f = \sum_{n=1}^{\infty} n^{-2}$ Tf converges in $L^p(G_1)$ and $f_n < n^2 f$, we have $0 \le Tf_n \le n^2$ Tf and

$$n^{2} \| Tf \|_{L^{p}(G_{2})} \ge \| Tf \|_{n^{p}(G_{2})} \ge n^{3}$$

implies $\|Tf\|_{L^{p}}$ (G_{2}) \geq n which is a contradiction for n may be large enough.

We shall need the result of Brainerd and Edwards [1; Theorem 3.5] later, thus we state as following.

Theorem B: If T is a positive linear map of L^p into $L^p(1 \le p \le \infty)$ which commute with ρ_a [resp. τ_a], then there exists a positive $\mu \in M_L^p$ [resp. M_R^p] such that

$$Tf = \mu *f [resp. f* \mu]$$

for $f \in C_c^-;$ if p< ∞ , the above identity holds for $f \in L^p(G).$ And conversely.

Now we are going to give our main theorem as following.

Theorem: Let G_1 and G_2 be locally compact groups with left Haar measures, Let T be an one to one, bipositive linear transformation from $L^p(G_1)$ onto $L^p(G_2)$, where 1 , and satisfying <math>T(f*g) = Tf*Tg whenever $f*g \in L^p(G_1)$ and $T^{-1}(f*g) = T^{-1}f*T^{-1}g$ whenever $f*g \in L^p(G_2)$. Then G_1 and G_2 are topologically isomorphic.

Proof of the theorem:

As T is an one to one linear mapping of $L^p(G_1)$ onto $L^p(G_2)$, it is immediately that $T \rho_a T^{-1}$ is a linear operator on $L^p(G_2)$ for every $a \in G_1$.

If
$$f,g \in L^p(G_2)$$
 and $f*g \in L^p(G_2)$, we have $(T\rho_a T^{-1})(f*g) = T \rho_a (T^{-1}f*T^{-1}g) = T (T^{-1}f*\rho_a T^{-1}g) = f*T \rho_a T^{-1}g$.

And for $b \in G_2$,

$$\tau_b (T \rho_a T^{-1}) (f*g) = \tau_b f*T \rho_a T^{-1}g,$$

and

$$(T \ \boldsymbol{\rho_{\rm a}} \ {\rm T}^{-1}) \ \boldsymbol{\tau_{\rm b}} \ (f*g) = (T \ \boldsymbol{\rho_{\rm a}} \ {\rm T}^{-1}) \ (\ \boldsymbol{\tau_{\rm b}} f*g) = \boldsymbol{\tau_{\rm b}}_f * (T \ \boldsymbol{\rho_{\rm a}} \ {\rm T}^{-1}) g .$$

Therefore,

$$\tau_b(T\rho_aT^{-1})(f^*g) = (T\rho_aT^{-1})\tau_b(f^*g)$$

whenever $f*g \in L^p(G_2)$, where $a \in G_1$, $b \in G_2$.

Since $C_c^*C_c$ is norm dense in L^p , we see that $T\rho_a$ T^{-1} commutes with left translation for each $a \in G_1$.

(56) 師大學報第十七期

As T and T⁻¹ are positive linear transformation, we see that T and T⁻¹ are bounded by Lemma A. Hence T ρ_a T⁻¹ is a bounded positive linear operator on $L^p(G_2)$ which commutes with τ_b , $b \in G_2$. Then there exist positive measures μ , $v \in M_p^p(G_2)$ such that

$$(T \rho_a T^{-1}) f = f * \mu$$
 for $f \in L^p(G_2)$,

and

$$(T \rho_{a^{-1}} T^{-1}) f = f *v$$
 for $f \in L^p(G_2)$.

(by Theorem B)

Since

$$(T \rho_{a-1} T^{-1}) (T \rho_a T^{-1}) f = f^* \mu^* v \text{ for } f \in L^p (G_s),$$

and

$$(T \rho_{a-1} T^{-1})(T \rho_a T^{-1})f = f = f * \delta_0 \text{ for } f \in L^p(G_s),$$

We have

$$\mu * v = \delta_0$$
.

Next, we prove μ , v are Dirac measures.

Suppose that b_1 and b_2 are two distinct points of the support of μ , c is a point of the support of v (b_1 , b_2 , $c \in G_2$). Since G_2 is Hausdorff, we can choose a neighborhood \cup of the identity $e_2 \in G_2$ such that $b_1 \cup c \cup \cap b_2 \cup c \cup = \phi$. choose a function $\phi \in C_c(G_2)$ with $0 \le \phi \le 1$ such that ϕ (e_2) = 1 and support $\subset \cup$ (by Urysohn lemma) Define

$$\mu_{1} = (\tau_{b_{1}} \psi) \mu + (\tau_{b_{2}} \psi) \mu$$

$$v_{1} = (\tau_{c} \psi) v$$

then $~\mu_{~1}$, $_{~1}^{\rm v}$ are positive, nonzero measures, and it is obvious that ${\rm v}_{1} \leq ~{\rm v}$, $~\mu_{~1} \leq \mu_{~}$, and

$$\mu_1 * v_1 \leq \mu * v = \delta_0$$

But μ_1^{*v} is a positive measure with at least two distinct points b_1c , b_2c in its support. We can show this by the following:

$$\mu_{1}^{*}v_{1}(b_{1}c_{1}) = \int G_{2}v_{1}(y^{-1}b_{1}c)d\mu_{1}(y)$$

$$\geq v_{1}(b_{1}^{-1}b_{1}c)\mu_{1}(b_{1})$$

$$\geq \mu(b_{1})v(c)$$

$$> 0$$

Similarly, $\mu_1^*v_1(b_2^c) \ge \mu_1(b_2) v(c) > 0$.

Since δ_0 has only one point support, it deduce a contradiction.

Therefore μ , v are Dirac measures.

Let
$$\delta$$
 $a(x) = \begin{cases} 1 & \text{if } x = a \\ 0 & \text{otherwise} \end{cases}$,

then $f \star \delta_a = \rho_a f$.

Since μ depends on a, we denote the support of μ by \wedge (a) and the mass of μ by λ (a), then \wedge (a) \in G_2 , and

$$f * \mu = f * \lambda (a) \delta_{\wedge (a)} = \lambda (a) \rho_{\wedge (a)} f.$$

Hence we obtain

$$(T \rho_a \quad T^{-1}) f = \lambda$$
 (a) $\rho_{\wedge(a)} f$, for $f \in L^p(G_2)$.

(58) 師大學報第十七期

Since T ρ_a T⁻¹ is a positive linear operator, λ (a) \geq 0 and \wedge is a mapping from G_1 to G_2 .

It remains to prove that \wedge is an algebra isomorphism and a bicontinuous mapping from G_1 onto G_2 .

It is obvious that \wedge and λ are homomorphisms. Indeed,

$$\lambda_{(ab)}\rho_{\wedge_{(ab)}}f = T\rho_{ab}T^{-1}f = (T\rho_aT^{-1})(T\rho_bT^{-1})f$$

$$= \lambda(a) \rho_{\wedge_{(a)}}\lambda(b)\rho_{\wedge_{(b)}}f = \lambda(a) \lambda(b)\rho_{\wedge_{(a)}}\rho_{\wedge_{(b)}}f$$

for every a, $\mathbf{b} \in \mathbf{G_1}$ and any $\mathbf{f} \in L^p(\mathbf{G_2})$

If we take the norm $\|\cdot\|_{p}$ on both sides, we obtain

$$\lambda$$
 (ab) = λ (a) λ (b)

and so

$$\rho \wedge_{(ab)} = \rho \wedge_{(a)} \rho \wedge_{(b)}$$

We want to show that \cap is one to one and bicontinuous.

Let e_1 and e_2 be the identity of G_1 and G_2 respectively, and I_1 , I_2 be the identity operators of $L^p(G_1)$ and $L^p(G_2)$ respectively.

Suppose that
$$\wedge$$
 (a) = e₂, a \in G₁, then

$$T\rho_aT^{-1}=\lambda(a)\rho_{\wedge(a)}=\lambda(a)I_2$$

and
$$\rho_a = \lambda(a) I_1$$
, $\lambda(a) = 1$, $a = e_1$, $\lambda(e_1) = 1$.

This shows that \wedge is an injective mapping. Actually λ (a) = 1 for all $a \in G_1$. In fact, if λ (a) > 1 for some $a \in G_1$, then by the reason of homomorphism λ , we can find a sequence $\left\{a_n\right\}$ in G_1

such that λ $(a_n) > n$, and since

 $\|T\| \, \|\rho_{\,a\,n}\| \, \|T^{-_1}\| \, \geq \, \|T\,\rho_{\,a\,n}\,T^{-_1}\| \geq \|n\,\rho_{\,\wedge\,(\,a\,n\,)}\| = n\,,$ We get

$$||T|| ||T^{-1}|| \ge n$$
.

This is a contradiction for sufficiently large n, since T and T^{-1} are bounded linear transformation. Therefore, λ (a) \leq 1 for any $a \in G_1$. On the other hand, if λ (a) < 1, then λ (a^{-1}) > 1, for $a \in G_1$. This shows λ (a) = 1 for all $a \in G_1$.

Now we show that \wedge is bicontinuous. For convenient, we give an alternative proof for the continuity as Wendel $\lceil 1 \rceil$.

We observe that \wedge is the product of the following mappings:

Evidently M_1 is continuous in the strong operator topology in $L^p(G_1)$ $1 . We now prove that <math>M_2$ is continuous. Since T is bounded, If $\rho_a {\longrightarrow} \rho_b$ in the strong operator topology, then

 $\|T\rho_a T^{-1} f - T\rho_b T^{-1} f \|p \leq \|T\| \|\rho_a T^{-1} f - \rho_b T^{-1} f \|p \to 0 ,$ for $f \in L^p(G_2)$.

(60) 師大學辦第十七期

Hence $T \rho_{a} T^{-1} \rightarrow T \rho_{b} T^{-1}$ in the strong operator topology, and M_{2} is continuous.

Finally, we prove that M_3 is continuous. It is clear that M_3 is a homomorphism of groups of operators $\left\{\rho_{\mathbf{a}^1}\right\}$ onto G_2 . Let V' be an arbitrary neighborhood of $e_2 \in G_2$, we shall construct a strong neighborhood of I_2 whose image under M_3 is contained in V'. If we can do this, then M_3 is continuous, since M_3 is a homomorphism

Let W' be a neighborhood of e_2 having finite measure δ and satisfying W'W'^-1 \subseteq V'. Let $X' \in L^p(G_2)$ be the characteristic function of W', we shall show that if $\| \rho a' X' - X' \| \rho < 2^{\frac{1}{p}} \delta$, then $a' \in V'$. In fact, if $a' \notin V'$, then $W' \cap W' = a' = \phi$ and $W' \cap W' = a' = \phi$, since for otherwise $W' = a' \cap W' \neq \phi$ implies that there exists x such that $x \in W' = a' = a' \cap A'$

$$(xa'^{-1})^{-1}x\in W'^{-1}W'\subset V'\Rightarrow a'\in V',$$

this is a contradiction, similarly, $W' \int a'^{-1} \cap W' = \phi$. In this case

$$\|\rho_a X' - X'\|_p = \left\{ \underbrace{1}_{p} G_z | X'(xa'^{-1}) - X'(x)|_p dx \right\} \frac{1}{p}$$

$$= 2^{p\delta},$$
deduce a contradiction.

$$\begin{split} &\text{If}\quad \|\rho_a,^{f-f}\|_p < 2^{\frac{1}{p}}\delta \text{ , } _f \in L^p(G_2), \text{ then } \|\rho\,a'X'-X'\|_p < 2^{\frac{1}{p}}\delta, \\ &\text{where } X' \text{ is constructed as above. So if } \|\rho_a,f-f\|_p < 2^{\frac{1}{p}}\delta \text{ for } \end{split}$$

every $f \subseteq L^p(G_2)$, we get $a' \subseteq V'$ from the above discussion. This shows that for every neighborhood V' of e_2 in G_2 , there is a neighborhood V of I_2 in the strong operator topology such that the image of V under the mapping M_3 is contained in V'. Hence M_3 is continuous. Therefore $\bigwedge = M_3 \ M_2 \ M_1$ is continuous.

At last, we prove \wedge is an onto mapping. If $a' \in G_2$, evidently, $T^{-1}\rho_{a'}T$ is a positive linear operator on $L^p(G_1)$ which commute with left translations by the same argument as done above. So there exist $a \in G_1$ such that

$$T^{-1}\rho_a, T = \rho_a$$

and

$$T \rho_{a} T^{-1} = \rho_{a} = \rho_{\wedge (a)}$$

That is,

$$a' = \bigwedge (a)$$
.

This shows that \wedge is an onto mapping. Hence the inverse \wedge -1 of \wedge from G_2 onto G_1 exists and continuous.

From the above argument, we prove that \wedge is an algebra isomorphism and a bicontinuous mapping from G_1 onto G_2 . Therefore, G_1 and G_2 are Topologically isomorphic. Q. E. D.

3. Additional remarks

(62) 師大學報第十七期

Remark 1. Whether the isomorphism problem holds for the space $L^{\infty}(G)$ for general locally compact froup G is still open. Note that if G is compact, the problem was given by Strichartz [9]. Remark 2. The problem for isomorphism that are neither isometric nor bipositive would appear to remain largely open. Remark 3. Assume that G_1 and G_2 are locally compact Abelian. $M(L^p(G_i))$ and $M(L^q(G_i))$, i=1,2, have isometric and bipositive

 $M(L^{p}(G_{i}))$ and $M(L^{q}(G_{i}))$, i=1,2, have isometric and bipositive isomorphism between them, where $\frac{1}{p}+\frac{1}{q}=1$. Use this property, we can extend the result of Gaudry [3] such that if there is an isometric or bipositive isomorphism from $M(L^{p}(G_{1}))$ onto $M(L^{q}(G_{2}))$, $\frac{1}{p}+\frac{1}{q}=1$, $(p,q\neq 2 \text{ for isometric case})$, then G_{1} and G_{2} are topologically isomorphic.

Remark 4. Assume that G_1 and G_2 are locally compact Abelian groups. $M(C_o(G_i))$ and $M(G_i)$, i=1,2, have isometric and bipositive isomorphism between them. If there exists an isometric or bipositive isomorphism from $M(C_o(G_1))$ onto $M(C_o(G_2))$, then G_1 and G_2 are topologically isomorphic.

Remark 5. Assume that G_1 and G_2 are locally compact groups. $M(L^1(G_i), L^p(G_i))$, $M(L^q(G_i), L^\infty(G_i))$ and $L^p(G_i)$, i=1,2, have isometric and bipositive isomorphism one another. We can extend the result of Parrott [7] and the theorem we just proved such that if T is an isometric [resp. bipositive] isomorphism from $M(L^1(G_1), L^p(G_1))$ onto $M(L^1(G_2), L^p(G_2))$ or from $M(L^q(G_1), L^\infty(G_1))$ onto $M(L^q(G_2), L^\infty(G_2))$, $p,q \neq 2, 1 \leq p, q < \infty$ [resp. $1 \leq p < \infty$], then G_1 and G_2 are topologically isometric.

REFERENCES

- 1. B. Brainerd and R. E. Edwards, <u>Linear operators which commute with translations</u>, I. J. Austr. Math. Soc. VI(1966), 289 350.
- 2. R. E. Edwards, <u>Bipositive and isometric isomorphism of some convolution algebras</u>, Canad. J. Math. 17(1965), 839-846.
- 3. G. I. Gaudry, <u>Isomorphisms of multiplier algebras</u>, Canad. J. Math. 20(1968), 1165-1172.
- 4. B. E. Johnson, <u>Isometric isomorphisms of measure algebras</u>, Proc. Amer. Math. Soc. 15(1964), 186-189.
- 5. Y. Kawada, On the group ring of a topological group, Math. Japonicae 1(1948), 1-5.
- 6. R. Larsen, <u>Lecture Notes in Mathematics (105)</u>, <u>The multiplier problem</u>, Edited by A. Dold, Heidelberg and B. Eckmann, Zurich, 1970.
- 7. S. K. Parrott: <u>Isomorphism multipliers</u>, Pacific J. Math. 25 (1968), 159-166.
- 8. R. Strichartz, <u>Isometric isomorphisms of measure algebras</u>, Pacific J. Math. 15(1965), 315-317.
- 9. R. Strichartz, <u>Isomorphisms of group algebras</u>, Proc. Amer. Math. Soc. 17(1966). 858-862.
- 10. J. G. Wendel, On isometric isomorphism of group algebra, Pacific, J. Math. 1(1951), 305-311.
- 11. J. G. Wendel, <u>Left centralizers and isomorphisms of group</u> algebra, Pacific J. Math. 2(1952), 251-261.