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1. Introduction and preliminaries

This paper contains three sections. Section 2 is the main part
of this paper, in which we prove a theorem related to isomorphism
problem; that is: Let G1 and G2 be locally compact groups with left
Haar measures, T be an one to one, bipositive linear transformation
from Lp(G1) onto Lp(Gz), 1<p <oo, and T(f*g) = Tf*Tg whenevér
/ f*g e Lp(G1), T—1(f*g) = ’1‘_1f*T-1g whenever f¥g & Lp(Gz). Then
G1 and G.2 are topologically isomorphic. In this section, we set out
some notations and definitions which remain standard throughout this

paper.

A\

1.2 LP Spaces (1< p < o)

Let G be a locally compact group with left Haar measure dx. If

G is compact, dx is assumed to be normalized so that S G dx = 1. 1If
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G is locally compact Abelian, we denote e the dual group of G.

Let LP(G), 1< p<’oco, be the Banach space of all p-th power
absolute integrable functions with respect to dx, the norm of Lp(G)

is given by L
Il = 1£1,=0JG foPdx]P

and L (G) denotes the Banach space of all essential bounded func-

tions and normed by

”f”Loo: ”f||oo = loc. ess. sup. |f(x)].

Denote by CO:CO(G) the space of all continuous functions which

vanich at infinity and by C_ = CC(G) the space of all continuous

functions with compact supports. The topology of ™ 1is the topology
of uniform convergence defined by restricting tc ° with the norm
“ . ” oo The topology of CC is the topology obtained by regarding Cé

as the internal inductive limit of its subspace

CC,k: fECC : Supp fCK} s

where K ranges over all the compact subsets of G and each of Cc’ k
being regarded as a Banach space with the supremum norm.

We define the left and right translations by
ta f(X) = f(a1x),
pa f(X) = f(xa‘l),

1.3 Convolutions

Let M = M(G) denote the space of all complex regular Borel mea-

sures on G with the weak topology ¢ (M, CC), and M, , = Mbd(G) be
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the subspace of M formed of those measures such that

feel = 1pe] (G <<oo .

For the space Mbd’ together with this norm, is the dual of Co'

MLp [ resp. Iv‘Rp Jjdenotes the measures p &M such that || p *f || pg
const. || f || b [ resp. |If* 2l b < const. |If “p ], for all f &

C,. If A » 1t EM(G) and for any Borel subset E of G, we define
Au (E) =J, (s E)yd 2 (s)

Convolution of function f and measure g by
f*p (x)=fq AGy) £ (xy™t ) dpu(y)
and

p*E(x) = J<Gf(}’“1 x) dudy) ,
where /\ (y) denote the modular function.
If f, g are functions, we define
f*g{x) = JGg(y”1 x) f(y) dy.

clearly,
Ty (f*g) =73 f "g’
pa (t*g) = f*pag.
1.4 Positive mappings

A mapping T from a function space into a function space is

called positive, if TF=0 almost everywhere whenever f= 0 almost
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everywhere, If T is an one - one onto mapping, T and T ~ are

positive, we call T bipositive.
1.5 Multipliers

Let G be a locally compact group, X, Y be topological linear
spaces of functions defined on G, then a continuous linear transfor-
mation T from X to Y is called a left (right) multiplier fOJ; the pair
(X,Y) whenever T T <= z‘ST(T P = {)ST) foreach s 2G. If T
is both a left and a right multiplier, then we call simply T a multi-

plier.

Denote by My (LP, LY [ resp. M_ (LP, Lq)] the set of all left

R
(right) multipliers for (LP, L), M (LP, 1Y) the set of all multipliers

for (LP, LY), T<p, 9<o0 -

2. Isomorphism theorems relate to multipliers

2.1 Introduction

Let G1 and G2 be locally compact (Hausdorff) groups, and E(Gi)

denote the function space over the group Gi’

The isomorphism problem consists of that at what conditions on
the mapping of E(G1) onto E(GZ) can deduce to the isomorphic topo-
logicabl- groups G1 and G,. First kawada[ 5 ]proved that if there
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exists a bipositive isomorphism of L1(G1) onto L} (GZ)’ then G, and

G2 are topologically isomorphic.

PO | SR TR . 2. S s N
[ 11 J proved ine 1somorphnlC groups irom the ny—

pothesis that if there is a norm nonincreasing isomorphism of L1(G1)
onto L1(G2\). Later Edwards { 2] consider the situation where the
groups Gi(i:1 , 2) are compact and there exists a bipositive isomor-
phism of Lp(G1) onto Lp(G2) (1< p<<oo) and proved under these
conditions, the groups are topologically isomorphic. In Edwards[Z],
he asked whether the compact groups G1 and G2 are necessarily
isomorphic if the bipositive is replace by isometry. The affirmative
answer to this question was given by Strichartz [9] . Further,
Parrott {7_11 proved the question for general locally compact groups
Cu1 and G2 under the isometric transformation of Lp(G1) onto LP(G2)
n<L p<oo,p #2) and some additional conditions which are necessary
for the Lebesgue space LP (Indeed, LP(G) needs not be an algebra if
G is not compact). We ask that whether the Parrott's result holds if
the isometry is replaced by bipositive. That is the same question
that in Edwards[Z] » whether the locally compact groups G1 and G2
are necessarily isomorphic if we assume that there is an injective
bipositive linear mapping from the Banach space Lp(G1) onto the
Banach space Lp(GZ). For this purpose we give the affirmative an-
swer in this paper.

Somé another isomorphic problems were given by Johnson [4] ,
Gaudry [ 3] and Strichartz [8] .

Johnson [ 4] showed on the bounded regular measure algebra
under the isometric isomorphism. Gaudry [ 3] proved on the multi-
plier algebra M (LP) 1 <p <oco under the condition of isometric

isomorphism and bipositive isomorphism.

2.2 The main theorem
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For convenient, we state the following
Lemma A: If T is a positive linear transformation of Lp(G1) in-

to Lp(G,,) < pgoo ), then T is continuous.
Proof: We give the alternative proof of Brainerd and Edwards

] as following: If T were not bounded, these would exist {fn} in

[1
Lp(G1) such that
f <1 3
” n“Lp (Gl) b and ”Tfu”Lp(Gz)Zn
Since T is positive, | Tfnl <T| f | , and so we may assume that
K -2 2
fnZ 0. The series f = & n~° Tf converges in Lp(G1) and f, < n“f,
n=] .
we have 0 < TfnS n Tf and
3
>n

2
Tfll o
nITE oy = ITE |, (2

implies [|Tf|| C (o, ) > n which is a contradiction for n may be
2

large enough.
We shall need the result of Brainerd and Edwards[ 1; Theorem

3. 5] later, thus we state as following.

Theorem B: If T is a positive linear map of LP into LP(1<p<oo)
which commute Wlthp a [resp. T, ], then there exists a positive

¢ e MLp [resp. MRp] such that

Tf = ¢ # [ resp. f* p]

for f & C_; if p<o0 , the above identity holds for f € LP(G). And

conversely.

Now we are going to give our main theorem as following.
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Theorem: Let G1 and G2 be locally compact groups with left

|

an one to one, bipositive linear transfor-

, Le e
mation from Lp(G1) onto LY G2), where 1 < p<co , and satisfying
r

\ "~ 1

f*xg & Lp(G1) and T-1(f*g) = 1_1'f'*T_ g
whenever f*g & Lp(Gz). Then G, and G, are topologically isomor-

phic.

Proof of the theorem:

As T is an one to one linear mapping of LP(G1) onto Lp(Gz), it is
immediately that TQ T~ is a linear operator on Lp(G2) for every
a & GAI .

If f,g &= Lp(G2) and f*g & Lp(Gz), we have (Tloa T-1) (t*g) =

1 1

T 0,4 (T"1f*T' g) =T (T‘1f* pa’T”g) =f*xTpP, T g.

And for b &€ G,,
Ty (T o aT_1) (f*g) =7 I*T paT—1g,
and
(T, Ty (%e) = (T o T7") (¢ f%¢) = TpHT o, T e.
Therefore, |
o (T T7 )(f ‘*g) =(Tp. T YHYr,(f*g)
whenever f*g e Lp(Gz), where a & G,, b &G,.

Since CC*CC is norm dense in Lp, we see that T 0, T_1 commutes

with left translation for each a = C-1 .
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As T and T_1 are positive linear transformation, we see that T
- -1,
and T ! are bounded by Lemma A. Hence T 0, T is a bounded

positive linear operator on Lp(G2) which commutes with ¢

Then there exist positive measures g2 , v MRp (Cz) such that
-1 p
(To, T )f=1*%py for f & LY(G,),
and
-1
(T o -t T ) £ =t*v for € Lp(Gz).

(by Theorem B)

Since

(T 0, T")(Tp, T-DE=f*u*v for feLP(q,),
and

(Tp,, T~ (Tp, T-Hf=f =f *5, for feLP(G,),

We have

Next, we prove ¢ , v are Dirac measures.

Suppose that b1 and b2 are two distinct points of the support
of 4 , ¢ is a point of the support of v (b1 » by, ce G2'v). Since G

\e}

is Hausdorff, we can choose a neighborhood U of the identity e
G, such that b1 Uc UN b, JeUuy =¢ . choose a function
Y= CC(G2) with 0 <¢ < 1 such that ¢ (e2) = 1 and support C|J
{(by Urysohn lemma) Define

[
Z

2
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Bi=(th dyp+ ( Z'b,gb);z ,

V1:(TC Sb)V

b
then g 1» V4 are positive, nonzero measures, and it is obvious that

v, <v, p,<p ,and

ﬂ1*vlgﬂ*V25n

But p 1*\7 is a positive measure with at least two distinct points

1

b1c, bzc in its support. We can show this by the following:

ti*vi(vicy) = SGle(Y~1b1C)dﬂl(Y)

Y

7 (
iz

[~

1 b,
-~

1 1 Iy (b Y

)
/ 1 17

<

\Y%

p (v )vic)
>0
Similarly, g 1*v1 (bzc) > p (b2) v (c) > o.

Since (2) has only one point support, it dednce a contradiction.

Therefore pu , v are Dirac measures.

Let § a(x): 1 if x=a
0 otherwise ,
then g ,= paf.
Sinee ¢ depends on a, we denote the support of ¢ by /\ (a) and

the mass of # by A (a), then A (a) E G,, and
f*ﬂ = f* 2 (a) 5/\(&) =2 (a)lo/\(a) f.
Hence we obtain

(To, T_1)f=,2 (a) f, for f < Lp(G2).

p/\(a)
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is a mapping from G1 to Gz.

It remains to prove that /\ is an algebra isomorphism and a bi-

continuous mapping from GAI onto GZ'

It is obvious that A and A are homomorphisms. Indeed, -
Z(ab)p/\(ab)f:TpabT—lf:(T‘OaT—l)(Tp bT-l)f
= A(a) 10/\)(11; AMIon . £=2(a) 2 (b)p/\muo/\cb) f

for every a, b & G, and any f & P (G2)

If we take the norm | .|| _ on both sides, we obtain
I p

A(@b)=14 (a)2 ()

and so

p/\(&b):p/\(a) p/\(b)

We want to show that N is one to one and bicontinuous.
Let e, and e, be the identity of G1 and G2 respectively, and

I,, 1, be the identity operators of Lp(G1) and LP(G.) respectively.

5)

Suppose that A (a) = e a& G, , then

2 1
'-.I.-“Oa,']:‘_1 = Z(a)p/\(a): l(a')lz

and P.= @)1, , JAa)xl,a=e, , J(e,) =1.

This shows that A is an injective mapping. Actually J (a) =1 for

all ac G,. Infact, if 3 (a) > 1 for some a € G., then by the

1

reason of homomorphism J , we can find a sequence {an} in G1
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such that } (an) > n, and since

ITH ol 1T = ITpa T 20 o pcan)=n,
We get x
ITl 1T | =n.
This is a contradiction for sufficiently large n, since T and T-1
are bounded linear transformation. Therefore, ] (a) < 1 for any
a € G;. On the other hand, if A (a) <1, then (a‘1) > 1, for
ac G,. This shows ] (a) =1 forall a &€ G-
Now we show that /\ is bicontinuous. For convenient, we give

an alternative proof for the continuity as Wendel [ 1] .

We observe that /\ is the product of the following mappings:

M1: a'_’Pa y ake G1.
Mzzpa_,TpaT'1=p/\(a) , a €G,

= 0 4 (set A\ (a) =a ,rthen a'e G2)
M3:pa'_>.a' ,a'er.

Evidently M1 is continuous in the strong operator topology in
Lp(G1) 1< p < oo . We now prove that M, is continuous.

Since T 1is'bounded, If 0,— Py in the strong operator topology,

then

[T . T*#+=Te , T Ip<IT il T f—p T fllP—0,

for & LP(q,).



and M2 is continuous.

Finally, we prove that M3 is continuous. It is clear that M3 is

a homomorphism of groups of operators {,Oa' } onto G2. Let V' be
an arbitrary neighborhood of e, = G2, we shall construct a. strong

neighborhood of I2 whose image under M3 is contained in V'. If

is continuous, since M, is a homomoxrphism

3

having finite measure ¢{ and sa-

we can do this, then M3

Let W' be a neighborhood of e,

. ~ —
ying vy VY = V. Let X' &

N 1
function of W', we shall show that if || @a'X’'—X’|| p0< 27§

b
then a' € V. Infact, ifa' & V', then W' (1 W' a' = @ and W'
wrarT! o ¢ , since for otherwise W' a' N w'x @ implies that

1

there exists x such that x & W' a' and x € W', xa' & W', and so

(xa’= ) xeW~ W' cV =a’eV’,

this is a contradiction, similarly, W'ja'—1 n w = ¢,

In this case

1
loe X" =X"1r={ G,1X"(xa"")~X" (x)|Pdx} P
:255’

deduce a contradiction.

f—f
It o, ||p<2 d,1=1PG

LN
2)1 then ",Oa'X'..X'”p<2p5,

. L
where X' is constructed as above. Soif || 041 — f"p<295 for
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every f <= Lp(G2), we get a' €= V' from the above discussion.
This shows that for every neighborhood V' of e, in G2, there is a

[ ]
neighborhood V of 12 in the strong operator topology such that the
R

image of V under the mapping M3 is contained in V'. Hence I\/l3 is

3 I\/l2 M1 is continuous.

At last, we prove /\ is an onto mapping. If a' & G

continuous. Therefore /\ =M

59 evidently,

! P, T is a positive linear operator on Lp(G1) which commute
with left translations by the same argument as done above. So there
exist a & G1 such that

-1
T 0 ,.T=p,

and

This shows that /\ is an onto mapping. Hence the inverse /\ -1 of

/\ from G, onto G, exists and continuous.

1
From the above argument, we prove that /\ is an algebra iso-
morphism and a bicontinuous mapping from G1 onto G2. Therefore,

G1 and G2 are Topologically isomorphic. Q. E. D.

3. Additional remarks
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Remark 1. Whether the isomorphism problem holds for the space
L°°(G) for general locally compact froup G is still open. Note that
if G is compact, the problem was given by Strichartz [91 .
Remark 2. The problem f:)r isomorphism that are neither isometric
nor bipositive would appear to remain largely open.

Remark 3. Assume that G1 and G2 are locally compact Abelian.

M(Lp(Gi)) and M(Lq(Gi)), i=1, 2, have isometric and bipdsitive

isomorphism between them, where —}1)- + - 1. Use this property,

q
we can extend the result of Gaudry[ 3 ] such that if there is an iso-

metric or bipositive isomorphism from M(Lp(G1)) onto M(Lq(GZ)),

+ =1, (p. q 74 2 for isometric case), then G, and G are

1
q 1 2

topologically isomorphic.

o=

Remark 4. Assume that (}1 and G2 are locally compact Abelian
groups. M(Co(Gi)) and M(Gi)’ i=1. 2, have isometric and bipo-
sitive isomorphism between them. If there exists an isometric or
1)) onto M(CO(Gz)), then G

and G2 are topologically isomorphic.

bipositive isomorphism from M(C(')(G 1

Remark 5. Assume that G1 and G2 are locally compact groups.
M(L1(Gi), Lp(Gi)), M(Lq(Gi), L°(G,)) and Lp(Gi), i=1.2, have
isometric and bipositive isomorphism one another. We can extend
the result of Parrott[ 7] and the theorem we just proved such that

if T is an isometric [ resp. bipositive ] isomorphism from M(L1(G1),
Lp(G1)) onto M(L_1 G,), Lp(GZ)) or from M(LY (Gy), L™ (Gy)
onto M(Lq(Gz), LOO(G2)), p.q £ 2,1<p. q9< oo [ re"sp. 1T <p

< oo ] , then G1 and G, are topologically isometric.
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