(Special Issue) Students’ Early Alert Systems in Taiwanese Universities: A Study of Current Uses and Restrictions
Author: Pei-Shan Hsieh (Center for Teaching and Learning Development, National Taiwan University), Meilun Shih (Centerfor Teachingand Learning Development, National Taiwan University)
Vol.&No.:Vol. 65, No. 4
Date:December 2020
Pages:171-201
DOI:10.6209/JORIES.202012_65(4).0006
Abstract:
The development of students’ early alert systems (EAS), or students’ learning alarm systems, has long been discussed by administrators and researchers in higher education. They are considered a powerful mechanism for evaluating students’ learning effectiveness, predicting potential learning difficulties, and identifying academically at-risk students. The rapid growth of information technology has made the EAS advanced in scale and practice. However, although most universities in Taiwan have established similar preventive systems or mechanisms, few studies have focused on exploring actual uses of and possible restrictions on existing EAS. Therefore, the main purpose of this study was to outline the current situation of EAS in Taiwanese universities. We explored the following questions: (1) What types of EAS have been established in universities in Taiwan? (2) What are the main functions and mechanisms of the current EAS? (3) What are the actual uses of EAS in universities? (4) What are the possible restrictions on and solutions for using EAS? Data were gathered from 56 public and private universities in Taiwan. Experts familiar with or in charge of EAS design, development, and use in these universities were interviewed by telephone or face-to-face. We found that although the utility rate of EAS in most universities tended to be high, faculty resistance and difficulty in follow-up assessments on EAS utilization were the two common restrictions that occurred across campuses. To enhance the use effectiveness of EAS, faculty and administrators from both departmental and institutional levels should be involved. In addition, this study suggested that in the future, universities must attempt to strengthen collaboration among units related to EAS, improve the evaluation of EAS effectiveness, and provide additional early alert indicators of students’ academic performance.
Keywords:at-risk student group, academic alert, early alert system, intervention
《Full Text》
References:
- 王瑋婷、黃國倫(2016)。學生課程出席率對學習成效之影響─以國立臺北藝術大學為例。載於國立東華大學主辦之「TANET2016臺灣網際網路研討會」論文集(pp. 1129-1133),花蓮縣。doi:10.6679/TANET.2016.201【Wang, W.-T., & Huang, G.-L. (2016). The impact of student’s attendance on learning outcomes: A case study at Taipei National University of the Arts. In National Dong Hwa University (Ed.), Proceeding of 2016 Taiwan Academic NETwork Conference (TANET2016) (pp. 1129-1133), Hualien, Taiwan. doi:10.6679/TANET.2016.201】
- 余奕憲(2018)。學習預警機制之探討與預測模型之建立(未出版碩士論文)。國立中央大學,桃園市。【Yu, Y.-H. (2018). Exploration of the early warning system and establishment of a forecast model (Unpublished master’s thesis). National Central University, Taoyuan, Taiwan.】
- 周汎澔、歐秀慧、林志隆、鐘育志、陳鵬元、楊瑞成(2010)。醫學大學學生期中成績預警與課業輔導之實施成效。醫學教育,14(3),197-208。doi:10.6145/jme.201009_14(3).0004【Chou, F.-H., Ou, H.-H., Lin, C.-L., Jong, Y.-J., Chen, P.-Y., & Yang, R.-C. (2010). Effectiveness of midterm early warning and tutoring in students at a medical university. Journal of Medical Education, 14(3), 197-208. doi:10.6145/jme.201009_14(3).0004】
- 邱宏彬、許依宸(2011)。資料採礦在學生流失偵測上之應用。資訊管理研究,11,83-99。【Chiu, H.-P., & Hsu Y.-C. (2011). Application of data mining techniques for detection of student drop out. Journal of Information Management, 11, 83-99.】
- 唐慧慈、郭玟杏(2017)。臺灣經驗:校務研究及對大學校院發展之影響。評鑑雙月刊,65,24-26。【Tang, H.-C., & Guo, W.-X. (2017). Taiwan experience: Institutional research and the impact on higher education. Evaluation Bimonthly, 65, 24-26.】
» More
- 王瑋婷、黃國倫(2016)。學生課程出席率對學習成效之影響─以國立臺北藝術大學為例。載於國立東華大學主辦之「TANET2016臺灣網際網路研討會」論文集(pp. 1129-1133),花蓮縣。doi:10.6679/TANET.2016.201【Wang, W.-T., & Huang, G.-L. (2016). The impact of student’s attendance on learning outcomes: A case study at Taipei National University of the Arts. In National Dong Hwa University (Ed.), Proceeding of 2016 Taiwan Academic NETwork Conference (TANET2016) (pp. 1129-1133), Hualien, Taiwan. doi:10.6679/TANET.2016.201】
- 余奕憲(2018)。學習預警機制之探討與預測模型之建立(未出版碩士論文)。國立中央大學,桃園市。【Yu, Y.-H. (2018). Exploration of the early warning system and establishment of a forecast model (Unpublished master’s thesis). National Central University, Taoyuan, Taiwan.】
- 周汎澔、歐秀慧、林志隆、鐘育志、陳鵬元、楊瑞成(2010)。醫學大學學生期中成績預警與課業輔導之實施成效。醫學教育,14(3),197-208。doi:10.6145/jme.201009_14(3).0004【Chou, F.-H., Ou, H.-H., Lin, C.-L., Jong, Y.-J., Chen, P.-Y., & Yang, R.-C. (2010). Effectiveness of midterm early warning and tutoring in students at a medical university. Journal of Medical Education, 14(3), 197-208. doi:10.6145/jme.201009_14(3).0004】
- 邱宏彬、許依宸(2011)。資料採礦在學生流失偵測上之應用。資訊管理研究,11,83-99。【Chiu, H.-P., & Hsu Y.-C. (2011). Application of data mining techniques for detection of student drop out. Journal of Information Management, 11, 83-99.】
- 唐慧慈、郭玟杏(2017)。臺灣經驗:校務研究及對大學校院發展之影響。評鑑雙月刊,65,24-26。【Tang, H.-C., & Guo, W.-X. (2017). Taiwan experience: Institutional research and the impact on higher education. Evaluation Bimonthly, 65, 24-26.】
- 國立臺灣大學(2016)。國立臺灣大學學士班學生學業成績預警作業要點。取自http://www.aca.ntu.edu.tw/reg/law/%E6%88%90%E7%B8%BE%E9%A0%90%E8%AD%A6%E4%BD%9C%E6%A5%AD%E8%A6%81%E9%BB%9E.pdf【National Taiwan University. (2016). National Taiwan University academic alert guidelines for undergraduate student. Retrieved from http://www.aca.ntu.edu.tw/reg/law/%E6%88%90%E7%B8%BE%E9%A0%90%E8%AD%A6%E4%BD%9C%E6%A5%AD%E8%A6%81%E9%BB%9E.pdf】
- 教育部(2012)。教育部補助獎勵大學教學卓越計畫及區域教學資源中心計畫實施要點。取自http://www.admin.ltu.edu.tw/Public/Upload/files/%E6%9C%83%E8%A8%88%E5%AE%A4/%E6%95%99%E5%8D%93%E8%A8%88%E7%95%AB%E5%AF%A6%E6%96%BD%E8%A6%81%E9%BB%9E.pdf【Ministry of Education. (2012). Implementation directions for program of promoting teaching excellence of universities and program for Teaching and Learning Resource Center. Retrieved from http://www.admin.ltu.edu.tw/Public/Upload/files/%E6%9C%83%E8%A8%88%E5%AE%A4/%E6%95%99%E5%8D%93%E8%A8%88%E7%95%AB%E5%AF%A6%E6%96%BD%E8%A6%81%E9%BB%9E.pdf】
- 陳慧娟、簡洧晴(2020)。大學生選課後悔與動機干擾研究:檢驗後悔因應策略的中介效果與社會支持的調節效果。教育科學研究期刊,65(2),277-312。doi:10.6209/JORIES.202006_65(2).0010【Chen, H.-J., & Chien, W.-C. (2020). Effect of regret on motivational interference among college students: Regret coping strategy as a mediator and social support as a moderator. Journal of Research in Education Sciences, 65(2), 277-312. doi:10.6209/JORIES.202006_65(2).0010】
- 陳鏗任(2014)。大學院校應用學習分析之概況。教育資料與圖書館學,51(4),597-636。doi:10.6120/JoEMLS.2014.514/0612.RV.CM【Chen, K.-Z. (2014). Review of the development of learning analytics applied in college-level institutes. Journal of Educational Media & Library Sciences, 51(4), 597-636. doi:10.6120/JoEMLS.2014.514/0612.RV.CM】
- 溫瑞烘(2000)。校務資訊系統研究─退學預警系統之研製。中華技術學院學報,20,22-37。doi:10.7095/JCIT.200003.0022【Ven, J.-H. (2000). A study of a college management information system - The design of a withdrawal-alerting system. Journal of Chia Institute of Technology, 20, 22-37. doi:10.7095/JCIT.200003.0022】
- 劉宇潔、韋小滿(2012)。干預─反應(RtI)模型:美國教育政策理念架構的新趨勢。比較教育研究,34(11),86-90。【Liu, Y.-J., & Wei, X.-M. (2012). Response to intervention model: New trend in educational policy conceptual framework in the United States. Comparative Education Review, 34(11), 86-90.】
- 蕭玉真(2011)。提升學習成效:淺談大學教學卓越計畫,評鑑雙月刊,31,29-33。doi:10.6445/EB.201105.0007【Hsiao, Y.-C. (2011). Promoting learning effects: Program of promoting teaching excellence of universities. Evaluation Bimonthly, 31, 29-33. doi:10.6445/EB.201105.0007】
- 羅孟彥(2013)。支援教育品質管理之整合式資訊系統建構與研究。教育科學研究期刊,58(4),69-101。doi:10.6209/JORIES.2013.58(4).03【Luo, M.-Y. (2013). Design, implementation and study of an integrated information system for educational quality management. Journal of Research in Education Sciences, 58(4), 69-101.doi:10.6209/JORIES.2013.58(4).03】
- Arnold, K. E., & Pistilli, M. D. (2012). Course signals at Purdue: Using learning analytics to increase student success.In Association for Computing Machinery (Ed.),Proceedings of the 2nd International Conference on Learning Analytics and Knowledge-LAK’12(pp. 267-270), Vancouver, Canada.doi:10.1145/2330601.2330666
- Bentham, C. (2017). Faculty perspectives and participation in implementing an early alert system and intervention in a community college.Electronic Theses and Dissertations, 2004-2019. Retrieved from https://stars.library.ucf.edu/etd/5661
- Cai, Q., Lewis, C. L., & Higdon, J. (2015). Developing an early-alert system to promote student visits to tutor center. The Learning Assistance Review, 20(1), 61-72.
- Chang, C.-C., Chou, P.-N., & Liang, C. (2018). Using ePortfolio-based learning approach to facilitate knowledge sharing and creation of college students. Australasian Journal of Educational Technology, 34(1), 30-41. doi:10.14742/ajet.2687
- Dietz-Uhler, B., & Hurn, J. E. (2013). Using learning analytics to predict (and improve) student success: A faculty perspective. Journal of Interactive Online Learning,12(1), 17-26.
- Dwyer, L. J., Williams, M. R., & Pribesh, S. (2019). Impact of early alert on community college student persistence in Virginia. Community College Journal of Research and Practice,43(3), 228-231. doi:10.1080/10668926.2018.1449034
- Ferguson, R. (2012). Learning analytics: Drivers, developments and challenges. International Journal of Technology Enhanced Learning, 4(5/6), 304-317.doi:10.1504/IJTEL.2012.051816
- Goldstein, P., & Katz, R. (2005). Academic analytics: The uses of management information and technology in higher education. EDUCAUSE Review Online.Retrieved from https://library.educause.edu/resources/2005/12/academic-analytics-the-uses-of-management-information-and-technology-in-higher-education
- Grush, M. (2011). Monitoring the PACE of student learning: Analytics at Rio Salado College.Campus Technology. Retrieved from https://campustechnology.com/articles/2011/12/14/monitoring-the-pace-of-student-learning-analytics-at-rio-salado-college.aspx
- Harkins, S. (2016). Response to intervention for student success in higher education: Is it possible? Journal of Instructional Research,5, 79-82.
- Hung, J.-L., Wang, M.-C., Wang, S., Abdelrasoul, M., Li, Y., & He, W. (2017). Identifying at-risk students for early interventions-A time-series clustering approach. IEEE Transactions on Emerging Topics in Computing,5(1), 45-55. doi:10.1109/TETC.2015.2504239
- Jayaprakash, S. M., & Lauría, E. J. M. (2014). Open academic early alert system: Technical demonstration. In Association for Computing Machinery (Ed.), Proceedings of the Fourth International Conference on Learning Analytics and Knowledge-LAK’14(pp. 267-268), Indianapolis, IN. doi:10.1145/2567574.2567578
- Jayaprakash, S. M., Moody, E. W., Lauría, E. J. M., Regan, J. R., & Baron, J. D. (2014). Early alert of academically at-risk students: An open source analytics initiative. Journal of Learning Analytics,1(1), 6-47. doi:10.18608/jla.2014.11.3
- May, T. A. (2011). Analytics, university 3.0, and the future of information technology. EDUCAUSE Review Online. Retrieved fromhttps://er.educause.edu/articles/2011/9/analytics-university-30-and-the-future-of-information-technology
- Nadasen, D., & List, A. (2017). Predicting four-year student success from two-year student data. In B. K. Daniel (Ed.), Big data and learning analytics in higher education (pp. 221-236). Cham, CH: Springer. doi:10.1007/978-3-319-06520-5_13
- Purnell, K., McCarthy, R., & McLeod, M. (2010). Student success at university: Using early profiling and interventions to support learning. Studies in Learning, Evaluation, Innovation and Development,7(3), 77-86.
- Tsao, N.-L., Kuo, C.-H., Guo, T.-L., & Sun, T.-J. (2017). Data consideration for at-risk students early alert. In Institute of Electrical and Electronics Engineers (Ed.),2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI)(pp. 208-211), Hamamatsu, Japan. doi:10.1109/IIAI-AAI.2017.133
- Villano, R., Harrison, S., Lynch, G., & Chen, G. (2018). Linking early alert systems and student retention: A survival analysis approach. Higher Education, 76(5), 903-920.doi:10.1007/s10734-018-0249-y
- Yu, L.-C., Lee, C.-W., Pan, H.-L., Chou, C.-Y., Chao, P.-Y., Chen, Z.-H., ...Lai, K.-R. (2018). Improving early prediction of academic failure using sentiment analysis on self‐evaluated comments. Journal of Computer Assisted Learning, 34(4), 358-365. doi:10.1111/jcal.12247