知識整合數位課程促進學生科學素養:以化學反應概念為例
作者:張欣怡(國立臺灣科技大學數位學習與教育研究所)、張淑苑(高雄市立苓雅國民中學)、羅慶璋(國立高雄師範大學科學教育暨環境教育研究所)、洪振方(國立高雄師範大學科學教育暨環境教育研究所)
卷期:60卷第3期
日期:2015年9月
頁碼:153-181
DOI:10.6209/JORIES.2015.60(3).06
摘要:
本研究融合以知識整合為設計原則的數位科學課程於正式課程中,檢視該課程能否促進學生於化學反應單元相關的科學素養,比較同校不同班級之學生分別接受知識整合數位科學課程與傳統教學方法後,在化學反應單元所展現的科學素養。研究對象為高雄市某國中八年級兩個班級的學生,每班共計四節課教學活動。教學前,學生先進行「化學反應素養測驗前測」,在教學結束後,再進行「化學反應素養測驗後測」與該校段考成就測驗,並在教學結束後1個月進行「化學反應素養測驗延宕後測」。研究結果指出,該知識整合數位科學課程可以提升學生於化學反應單元相關的科學素養,而延宕測驗結果顯示,相較於傳統教科書教學,該課程對參與學生於化學反應單元相關科學素養具有長期效應。然而,接受知識整合數位科學課程教學後之學生所表現出的科學素養與其之後的學校理化段考表現存在斷裂,本研究據以反思現行課程與評量之議題。
關鍵詞:化學反應、知識整合、科學素養、課程融入
《詳全文》
參考文獻:
- 李文旗、張俊彥(2005)。中學生應達到的地球科學素養?-中學地科老師的觀點。師大學報:科學教育類,50(2),1-27。doi:10.6300/JNTNU.2005.50(2).01【Lee, W.-C., & Chang, C.-Y. (2005). Taiwan’s secondary school teachers’ expectations with regard to the earth science literacy of their students. Journal of National Taiwan Normal University: Science Education, 50(2), 1-27. doi:10.6300/JNTNU.2005.50(2).01】
- 洪振方、林志能(2011)。網路與課室學習環境促進學童論證能力之效益。教育實踐與研究,24(1),67-106。【Hung, J.-F., & Lin, C.-N. (2011). The effect of argumentation-based learning environment on promoting 6th grade students’ argumentation abilities. Journal of Educational Practice and Research, 24(1), 67-106.】
- 張俊彥、董家莒(2000)。「問題解決」或「無問題解決」?電腦輔助教學成效的比較研究。科學教育學刊,8(4),357-377。【Chang, C.-Y., & Tung, C.-C. (2000). To problem solving or not to problem solving? A comparison of different CAI effectiveness. Chinese Journal of Science Education, 8(4), 357-377.】
- 教育部(2003)。國民中小學九年一貫課程綱要。臺北市:作者。【Ministry of Education. (2003). The outline for the nine-year integrated curriculum. Taipei, Taiwan: Author.】
- 臺灣PISA國家研究中心(2009)。臺灣PISA 2009年成果報告。臺南市:作者。【PISA Taiwan National Center. (2009). Taiwan PISA 2009 report. Tainan, Taiwan: Author.】
» 展開更多
- 李文旗、張俊彥(2005)。中學生應達到的地球科學素養?-中學地科老師的觀點。師大學報:科學教育類,50(2),1-27。doi:10.6300/JNTNU.2005.50(2).01【Lee, W.-C., & Chang, C.-Y. (2005). Taiwan’s secondary school teachers’ expectations with regard to the earth science literacy of their students. Journal of National Taiwan Normal University: Science Education, 50(2), 1-27. doi:10.6300/JNTNU.2005.50(2).01】
- 洪振方、林志能(2011)。網路與課室學習環境促進學童論證能力之效益。教育實踐與研究,24(1),67-106。【Hung, J.-F., & Lin, C.-N. (2011). The effect of argumentation-based learning environment on promoting 6th grade students’ argumentation abilities. Journal of Educational Practice and Research, 24(1), 67-106.】
- 張俊彥、董家莒(2000)。「問題解決」或「無問題解決」?電腦輔助教學成效的比較研究。科學教育學刊,8(4),357-377。【Chang, C.-Y., & Tung, C.-C. (2000). To problem solving or not to problem solving? A comparison of different CAI effectiveness. Chinese Journal of Science Education, 8(4), 357-377.】
- 教育部(2003)。國民中小學九年一貫課程綱要。臺北市:作者。【Ministry of Education. (2003). The outline for the nine-year integrated curriculum. Taipei, Taiwan: Author.】
- 臺灣PISA國家研究中心(2009)。臺灣PISA 2009年成果報告。臺南市:作者。【PISA Taiwan National Center. (2009). Taiwan PISA 2009 report. Tainan, Taiwan: Author.】
- 謝志仁(1991)。國中學生化學變化相關概念另有架構之探究(未出版碩士論文)。國立彰化師範大學,彰化縣。【Xie, Z.-R. (1991). Junior high school students’ alternative frameworks for various concepts related to chemical change (Unpublished master’s thesis). National Changhua University, Changhua County, Taiwan.】
- Ahtee, M., & Varjola, I. (1998). Students’ understanding of chemical reaction. International Journal of Science Education, 20(3), 305-316. doi:10.1080/0950069980200304
- Al-Kunifed, A., Good, R., & Wandersee, J. (1993). Investigation of high school chemistry students’ concepts of chemical symbol, formula, and equation: Students’ prescientific conceptions. Retrieved from ERIC database. (ED376020)
- Ardac, D., & Akaygun, S. (2004). Effectiveness of multimedia-based instruction that emphasizes representations on students’ understanding of chemical change. Journal of Research in Science Teaching, 41(4), 317-337. doi:10.1002/tea.20005
- Bond, D. (1989). In pursuit of chemical literacy: A place for chemical reactions. Journal of Chemical Education, 66(2), 157-160. doi:10.1021/ed066p157
- Brown, A. (1992). Design experiments: Theoretical and methodological challenges in creating complex interventions in classroom settings. The Journal of Learning Sciences, 2(2), 141-178. doi:10.1207/s15327809jls0202_2
- Chandrasegaran, A. L., Treagust, D. F., & Mocerino, M. (2009). Emphasizing multiple levels of representation to enhance students’ understandings of the changes occurring during chemical reactions. Journal of Chemical Education, 86(12), 1433-1436. doi:10.1021/ed086p1433
- Chang, H.-Y., Quintana, C., & Krajcik, J. S. (2010). The impact of designing and evaluating molecular animations on how well middle school students understand the particulate nature of matter. Science Education, 94(1), 73-94. doi:10.1002/sce.20352
- Chang, H.-Y., Zhang, Z. H., & Chang, S.-Y. (2014). Adaptation of an inquiry visualization curriculum and its impact on chemistry learning. The Asia-Pacific Education Researcher, 23(3), 605-619. doi:10.1007/s40299-013-0133-6
- Chiu, J. L., & Linn, M. C. (2014). Supporting knowledge integration in chemistry with a visualization-enhanced inquiry unit. Journal of Science Education and Technology, 23(1), 37-58. doi:10.1007/s10956-013-9449-5
- Cohen, J. (1960). A coefficient of agreement for nominal scales. Education and Psychological Measurement, 20(1), 37-46. doi:10.1177/001316446002000104
- Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.
- Davis, E. A. (2004). Knowledge integration in science teaching: Analyzing teachers’ knowledge development. Research in Science Education, 34(1), 21-53. doi:10.1023/B:RISE.0000021034. 01508.b8
- Davis, E. A., & Krajcik, J. S. (2005). Designing educative curriculum materials to promote teacher learning. Educational Researcher, 34(3), 3-14. doi:10.3102/0013189X034003003
- Driver, R., Squires, A., Rushworth, P., & Wood-Robinson, V. (1994). Making sense of secondary science-Research into children’s ideas. London, UK: Routledge.
- Frailich, M., Kesner, M., & Hofstein, A. (2009). Enhancing students’ understanding of the concept of chemical bonding by using activities provided on an interactive website. Journal of Research in Science Teaching, 46(3), 289-310. doi:10.1002/tea.20278
- Gabel, D. L., Samuel, K. V., & Hunn, D. (1987). Understanding the particulate nature of matter. Journal of Chemical Education, 64(8), 695-697. doi:10.1021/ed064p695
- Gabel, D. L., & Sherwood, R. D. (1983). Facilitating problem solving in high school chemistry. Journal of Research in Science Teaching, 20(2), 163-177. doi:10.1002/tea.3660200207
- Gerard, L. F., Spitulnik, M., & Linn, M. C. (2010). Teacher use of evidence to customize inquiry science instruction. Journal of Research in Science Teaching, 47(9), 1037-1063. doi:10.1002/ tea.20367
- Gilbert, J. K. (2008). Visualization: An emergent field of practice and enquiry in science education. In J. K. Gilbert, M. Reiner, & M. Nakhleh (Eds.), Visualization: Theory and practice in science education (Vol. 3, pp. 3-24). Dordrecht, the Netherlands: Springer. doi:10.1007/978-1-4020- 5267-5_1
- Greenbowe, T. J. (1994). An interactive multimedia software program for exploring electrochemical cells. Journal of Chemical Education, 71(7), 555-557. doi:10.1021/ed071p555
- Harrison, A. G., & Treagust, D. F. (2000). Learning about atoms, molecules, and chemical bonds: A case study of multiple-model use in grade 11 chemistry. Science Education, 84(3), 352-381. doi:10.1002/(SICI)1098-237X(200005)84:3<352::AID-SCE3>3.3.CO;2-A
- Hesse, J. J., & Anderson, C. W. (1992). Students’ conceptions of chemical change. Journal of Research in Science Teaching, 29(3), 277-299. doi:10.1002/tea.3660290307
- Johnstone, A. H. (1993). The development of chemistry teaching: A changing response to changing demand. Journal of Chemical Education, 70(9), 701-705. doi:10.1021/ed070p701
- Krajcik, J. S. (1991). Developing students’ understanding of chemical concepts. In S. M. Glynn, R. H. Yeany, & B. K. Britton (Eds.), The psychology of learning science (pp. 117-147). Hillsdale, NJ: Lawrence Erlbaum Associates.
- Krajcik, J. S., Czerniak, C. M., & Berger, C. (1999). Teaching children science: A project-based approach. Boston, MA: McGraw-Hill College.
- Levy, D., & Tinker, R. (2008, February). Links between dynamic representations of atomic-scale phenomena and molecular reasoning. Paper presented at the Chais Conference on Instructional Technologies Research, Raanana, Israel.
- Linenberger, K. J., & Holme, T. A. (2015). Biochemistry instructors’ views toward developing and assessing visual literacy in their courses. Journal of Chemical Education, 92(1), 23-31. doi:10. 1021/ed500420r
- Linn, M. C. (2006). The knowledge integration perspective on learning and instruction. In R. K. Sawyer (Ed.), The Cambridge handbook of the learning sciences (pp. 243-264). New York, NY: Cambridge University Press. doi:10.1017/CBO9780511816833.016
- Linn, M. C., Chang, H.-Y., Chiu, J. L., Zhang, Z., & McElhaney, K. (2011). Can desirable difficulties overcome deceptive clarity in scientific visualizations? In A. S. Benjamin (Ed.), Successful remembering and successful forgetting: A festschrift in honor of Robert A. Bjork (pp. 235-258). New York, NY: Psychology Press.
- Linn, M. C., Davis, E. A., & Bell, P. (2004). Internet environments for science education. Mahwah, NJ: Lawrence Erlbaum Associates. doi:10.4324/9781410610393
- Linn, M. C., & Eylon, B. S. (2006). Science education: Integrating views of learning and instruction. In P. A. Alexander & P. H. Winne (Eds.), Handbook of educational psychology (2nd ed., pp. 511-544). Mahwah, NJ: Lawrence Erlbaum Associates.
- Linn, M. C., & Hsi, S. (2000). Computers, teachers, and peers: Science learning partners. Mahwah, NJ: Lawrence Erlbaum Associates. doi:10.4324/9781410605917
- Lombard, M., Snyder-Duch, J., & Bracken, C. C. (2002). Content analysis in mass communication: Assessment and reporting of intercoder reliability. Human Communication Research, 28(4), 587-604. doi:10.1093/hcr/28.4.587
- Lynch, M. (1990). The externalized retina: Selection and mathematization in the visual documentation of objects in the life sciences. In M. Lynch & S. Woolgar (Eds.), Representation in scientific practice (pp. 153-186). Cambridge, MA: The MIT Press.
- Organisation for Economic Cooperation and Development. (2013). PISA 2012 results in focus: What 15-year-olds know and what they can do with what they know. Retrieved from http://www.oecd. org/pisa/keyfindings/pisa-2012-results-overview.pdf
- Organisation for Economic Cooperation and Development. (2015). PISA 2015 draft science framework. Retrieved from http://www.oecd.org/pisa/pisaproducts/Draft%20PISA%202015% 20Science%20Framework%20.pdf
- Shwartz, Y., Ben-Zvi, R., & Hofstein, A. (2006). The use of scientific literacy taxonomy for assessing the development of chemical literacy among high-school students. Chemistry Education Research and Practice, 7(4), 203-225. doi:10.1039/B6RP90011A
- Slotta, J. D., & Linn, M. C. (2009). WISE science: Web-based inquiry in the classroom. New York, NY: Teachers College Press.
- Stavridou, H., & Solomonidou, C. (1989). Physical phenomena-chemical phenomena: Do pupils make the distinction? International Journal of Science Education, 11(1), 83-92. doi:10.1080/ 0950069890110108
- Tasker, R., & Dalton, R. (2008). Visualizing the molecular world – Design, evaluation, and use of animations. In J. K. Gilbert, M. Reiner, & M. Nakhleh (Eds.), Visualization: Theory and practice in science education (pp. 103-131). Dordrecht, the Netherlands: Springer. doi:10.1007/ 978-1-4020-5267-5_6
- The Design-Based Research Collective. (2003). Design-based research: An emerging paradigm for educational inquiry. Educational Researcher, 32(1), 5-8. doi:10.3102/0013189X032001005
- Tversky, B., Morrison, J. B., & Betrancourt, M. (2002). Animation: Can it facilitate? International Journal of Human-Computer Studies, 57(4), 247-262. doi:10.1006/ijhc.2002.1017
- Van Driel, J. H., De Vos, W., Verloop, N., & Dekkers, H. (1998). Developing secondary students’ conceptions of chemical reactions: The introduction of chemical equilibrium. International Journal of Science Education, 20(4), 379-392. doi:10.1080/0950069980200401
- Witte, D., & Beers, K. (2003). Testing of chemical literacy (chemistry in context in the dutch National examinations). Chemical Education International, 4(1), AN-3.
- Wu, H.-K., Hsu, Y.-S., & Hwang, F.-K. (2010). Designing a technology-enhanced learning environment to support scientific modeling. Turkish Online Journal of Educational Technology, 9(4), 58-65.
- Wu, H.-K., Krajcik, J., & Soloway, E. (2001). Promoting understanding of chemical representations: Students’ use of a visualization tool in the classroom. Journal of Research in Science Teaching, 38(7), 821-842. doi:10.1002/tea.1033
- Xie, Q., & Tinker, R. (2006). Molecular dynamics simulations of chemical reactions for use in education. Journal of Chemical Education, 83(1), 77-83. doi:10.1021/ed083p77
- Zhang, Z., & Linn, M. C. (2008, June). Using drawings to support learning from dynamic visualizations. Paper presented at the 8th International Conference of the Learning Sciences, Utrecht, the Netherlands.
- Zhang, Z., & Linn, M. C. (2011). Can generating representations enhance learning with dynamic visualizations? Journal of Research in Science Teaching, 48(10), 1177-1198. doi:10.1002/tea.20443
- Zhang, Z. H., & Linn, M. C. (2013). Learning from chemical visualizations: Comparing generation and selection. International Journal of Science Education, 35(13), 2174-2197. doi:10.1080/ 09500693.2013.792971
Journal directory listing - Volume 60 (2015) - Journal of Research in Education Sciences【60(3)】September
Using a Knowledge-Integration-Based Digital Curriculum to Facilitate Scientific Literacy in Learning Chemical Reactions
Author: Hsin-Yi Chang(Graduate Institute of Digital Learning and Education, National Taiwan University of Science and Technology), Shu-Yuan Chang(Kaohsiung Municipal Ling Ya Junior High School), Ching-Jang Lo(Graduate Institute of Science Education & Environmental Education, National Kaohsiung Normal University), Jeng-Fung Hung(Graduate Institute of Science Education & Environmental Education, National Kaohsiung Normal University)
Vol.&No.:Vol. 60, No. 3
Date:September 2015
Pages:153-181
DOI:10.6209/JORIES.2015.60(3).06
Abstract:
In this study, we implemented a digital science curriculum design based on the knowledge integration perspective to replace the conventional textbook-based curriculum, focusing on the topic of chemical reactions. We investigated the influence of the curriculum on the eighth-grade students’ scientific literacy relating to the concepts of chemical reactions. The participants were two classes consisting of 58 students: one class received instructions by using the knowledge-integration-based digital curriculum and the other class received instructions by using conventional textbooks. Data collected included pretest, posttest, midterm exam, and delayed posttest results, consisting of items that measured students’ scientific literacy relating to the concepts of chemical reactions. The results indicated that the knowledge-integration-based digital curriculum has both short-term and long-term effects on facilitating students’ scientific literacy. However, students’ performances in scientific literacy after the instruction were not associated with their performances in traditional school exams. Concerns of school tests and instructions were discussed.
Keywords:chemical reaction, knowledge integration, scientific literacy, curriculum infusion