期刊目錄列表 - 62卷(2017) - 【教育科學研究期刊】62(2)六月刊(本期專題:數位學習的回顧與展望)

應用決策樹探索大學以上畢業生薪資之影響因素 作者:鄭永福(國立臺灣師範大學科學教育所)、許瑛玿(國立臺灣師範大學科學教育所) 

卷期:62卷第2期
日期:2017年6月
頁碼:125-151
DOI:10.6209/JORIES.2017.62(2).05

摘要:
近年由於高等教育的快速擴充,導致教育市場的競爭壓力激增,大學以上畢業生在勞動市場上的供需失衡,其薪資的變化逐漸成為社會大眾關注的議題。近20年,已有諸多文獻探討大學畢業生薪資的影響因素,也建立相當完整的薪資理論架構。本研究目的在探究大學畢業生薪資的影響因素,研究以台灣教育長期追蹤資料庫(TEPS)以及台灣教育長期追蹤資料來源後續調查:教育與勞動市場的連結(TEPS-B)為資料,採用資料庫的變項共1,303個,設定研究三種薪資模型,分別是畢業初薪資、入職場後薪資以及薪資變動等模型,研究採用大數據資料探勘作法,分別對三個模型進行決策樹資料探勘,因薪資為連續變項,故採用決策樹中的迴歸樹方法,研究結果顯示:一、畢業初薪資模型篩選出教育程度、公司組織規模以及高中職二年級時的綜合分析能力。二、入職場後薪資模型篩選出公司組織規模、工作職務、工作時數以及高中職二年級時的綜合分析能力。三、薪資變動模型篩選出工作職務。本研究結果亦顯示,決策樹分析能夠有效地發掘出既有薪資理論之外的薪資影響因素,即高中職二年級時的綜合分析能力及答對題數。

關鍵詞:大學畢業生薪資、台灣教育長期追蹤資料庫、台灣教育長期追蹤資料來源後續調查、決策樹、迴歸樹

《詳全文》 檔名

參考文獻:
  1. 田弘華(2008)。高等教育擴張與大學畢業生薪資的影響因素。台灣高等教育研究電子報24。取自http://www.cere.ntnu.edu.tw/files/upload_files/cere/files/hedudb/epaper/高教電子報第24期_焦點議題.pdf【Tien, H.-H. (2008). The expansion of higher education and the factors affecting graduate salaries. Taiwan Higher Education Research Newsletter, 24. Retrieved from http://www.cere.ntnu.edu.tw/files/upload_files/cere/files/ hedudb/epaper/高教電子報第24期_焦點議題.pdf】
  2. 青輔會(2006)。在正式教育中提升就業力─大專畢業生就業力調查報告。臺北市:作者。【National Youth Commission. (2006). Promote employment in formal education: Investigation report on the employment of college graduates. Taipei, Taiwan: Author.】
  3. 青輔會(2009)。98年大專青年就業力現況調查報告。臺北市:作者。【National Youth Commission. (2009). 2009 an investigation report on the current situation of young college graduates’ employment. Taipei, Taiwan: Author.】
  4. 池進通、李鴻文、陳芬儀(2008)。五大人格特質與工作績效關係之研究。經營管理論叢4(2),1-9。【Chih, J.-T., Lee, H.-W., & Chen, F.-Y. (2008). The relationship between big five model and job performance. Operation Management Reviews, 4(2), 1-9】
  5. 吳慧瑛(2003)。二十年來教育發展之經濟評估1978-2001。臺灣經濟預測與政策33(2),97-130。【Wu, H.-Y. (2003). Returns to schooling in Taiwan, 1978-2001. Taiwan Economic Forecast and Policy, 33(2), 97-130.】
» 展開更多
中文APA引文格式鄭永福、許瑛玿(2017)。應用決策樹探索大學以上畢業生薪資之影響因素。教育科學研究期刊62(2),125-151。doi:10.6209/JORIES.2017.62(2).05
APA FormatCheng, Y.-F., Hsu, Y.-S. (2017). Decision tree for investigating the factors affecting graduate salaries. Journal of Research in Education Sciences, 62(2), 125-151. doi:10.6209/JORIES.2017.62(2).05

Journal directory listing - Volume 62 (2017) - Journal of Research in Education Sciences【62(2)】June (Special Issue: Digital Learning: Retrospect and Prospect)

Decision Tree for Investigating the Factors Affecting Graduate Salaries Author: Yung-Fu Cheng(Graduate Institute of Science Education, National Taiwan Normal University), Ying-Shao Hsu(Graduate Institute of Science Education, National Taiwan Normal University)

Vol.&No.:Vol. 62, No.2
Date:June 2017
Pages:125-151
DOI:10.6209/JORIES.2017.62(2).05

Abstract:

In recent years, the rapid expansion of higher education has led to a surge in competitive pressure in the education market and has increased the excess in university-educated labor supply. Thus, the salary of graduates is a major societal issue. Over the past two decades, a number of studies have explored the factors that positively affect graduate salaries, and have constructed a complete theoretical scheme. Our studies explored these factors by analyzing data from the Taiwan Education Panel Survey and Taiwan Education Panel Survey and Beyond, which together comprise 1,303 variables. The following three types of model were investigated: the initial model, workplace model, and change model. Data mining for the three models was conducted using a regression tree, a type of decision tree method for analyzing big data. The major findings of this research are described as follows: (1) Three variables, educational level, firm size, and academic achievement, were selected in the initial model. (2) Four variables, firm size, job title, working hours, and academic achievement, were selected in the workplace model. (3) One variable, job title, was selected in the change model. In summary, the decision tree effectively determined that academic achievement positively affects graduate salaries.

Keywords:college graduate salaries, decision tree, regression tree, Taiwan Education Panel Survey, Taiwan Education Panel Survey and Beyond