從算式或文字閱讀數學科普文章:共變數分析與階層線性模式的比較
作者:國立臺灣師範大學教育心理與輔導學系暨學習科學跨國頂尖研究中心吳昭容、國立臺灣師範大學教育心理與輔導學系鄭鈐華、國立臺灣師範大學教育心理與輔導學系張凌嘉
卷期:66卷第1期
日期:2021年3月
頁碼:107-139
DOI:https://doi.org/10.6209/JORIES.202103_66(1).0004
摘要:
理解數學推導是困難的,而文獻上對文本中數學推導段落採用算式或文字表徵何者較具優勢的結論不一。本研究以299位來自四所高中職的高一學生為對象,比較科普文章以算式或文字表達數學推導對理解的影響,以及對高、低能力學生是否有不同的效果。由於高中生能力是巢套於學校,因此以共變數分析與階層線性模式來比較結果。研究材料為三篇幾何的科普文本及其理解測驗,算式與文字兩個版本的內容只在關鍵句(分別僅1、5、5句)用了不同表徵,其餘內容、附圖及測驗都相同。受試者被隨機分派到算式版或文字版,閱讀後的理解測驗包含是非、計算及說明題。此外,受試者也接受閱讀推理篩選測驗與數學先備知識測驗。共變數分析結果顯示能力和版本不具交互作用,且高能力學生顯著優於低能力學生,算式版多數優於文字版。而階層線性模式分析在排除學校平均數學能力的顯著影響後,凸顯了版本的效果,算式版低能力學生的閱讀表現與文字版高能力學生無顯著差異。本研究從算式和文字的語言結構討論算式優勢,也透過文本主題領域、認知負荷、評量重點及測驗題型,和受試者特性與文獻進行比較。
關鍵詞:外在表徵、語言、數學科普、閱讀理解
《詳全文》
參考文獻:
- 左台益、李健恆(2018)。素養導向之數學教材設計與發展。教育科學研究期刊,63(4),29-58。https://doi.org/10.6209/JORIES.201812_63(4).0002【Tso, T.-Y., & Lei, K.-H. (2018). Design and development of mathematical literacy-oriented subject materials. Journal of Research in Education Science, 63(4), 29-58. https://doi.org/10.6209/JORIES.201812_63(4).0002】
- 吳昭容、曾建銘、鄭鈐華、陳柏熹、吳宜玲(2018)。領域特定詞彙知識的測量:三至八年級學生數學詞彙能力。教育研究與發展期刊,14(4),1-40。https://doi.org/10.3966/181665042018121404001【Wu, C.-J., Cheng, C.-M., Cheng, C.-H., Chen, P.-H., & Wu, Y.-L. (2018). The measurement of domain-specific vocabulary knowledge: The mathematical vocabulary ability of third to eighth grade students. Journal of Educational Research and Development, 14(4), 1-40. https://doi.org/10.3966/181665042018121404001】
- 李浩然、柳賢(2012)。國三學生數學觀念之研究。科學教育學刊,20(3),267-294。https://doi.org/10.6173/CJSE.2012.2003.03【Lee, H.-J., & Leou, S. (2012). Ninth grade students’ conceptions of mathematics. Chinese Journal of Science Education, 20(3), 267-294. https://doi.org/10.6173/CJSE.2012.2003.03】
- 柯華葳、詹益綾(2007)。國民中學閱讀推理篩選測驗編製報告。測驗學刊,54(2),429-449。https://doi.org/10.7108/PT.200712.0429【Ko, H.-W., & Chan, Y.-L. (2007). Reading comprehension screening test for junior high school students. Psychological Testing, 54(2), 429-449. https://doi.org/10.7108/PT.200712.0429】
- 曹亮吉(1996)。阿草的葫蘆:文化活動中的數學。遠哲科學教育基金會。【Cao, L.-J. (1996). A-Cao’s gourd: Mathematics in cultural activities. Yuan T. Lee Foundation Science Education for All.】
» 展開更多
- 左台益、李健恆(2018)。素養導向之數學教材設計與發展。教育科學研究期刊,63(4),29-58。https://doi.org/10.6209/JORIES.201812_63(4).0002【Tso, T.-Y., & Lei, K.-H. (2018). Design and development of mathematical literacy-oriented subject materials. Journal of Research in Education Science, 63(4), 29-58. https://doi.org/10.6209/JORIES.201812_63(4).0002】
- 吳昭容、曾建銘、鄭鈐華、陳柏熹、吳宜玲(2018)。領域特定詞彙知識的測量:三至八年級學生數學詞彙能力。教育研究與發展期刊,14(4),1-40。https://doi.org/10.3966/181665042018121404001【Wu, C.-J., Cheng, C.-M., Cheng, C.-H., Chen, P.-H., & Wu, Y.-L. (2018). The measurement of domain-specific vocabulary knowledge: The mathematical vocabulary ability of third to eighth grade students. Journal of Educational Research and Development, 14(4), 1-40. https://doi.org/10.3966/181665042018121404001】
- 李浩然、柳賢(2012)。國三學生數學觀念之研究。科學教育學刊,20(3),267-294。https://doi.org/10.6173/CJSE.2012.2003.03【Lee, H.-J., & Leou, S. (2012). Ninth grade students’ conceptions of mathematics. Chinese Journal of Science Education, 20(3), 267-294. https://doi.org/10.6173/CJSE.2012.2003.03】
- 柯華葳、詹益綾(2007)。國民中學閱讀推理篩選測驗編製報告。測驗學刊,54(2),429-449。https://doi.org/10.7108/PT.200712.0429【Ko, H.-W., & Chan, Y.-L. (2007). Reading comprehension screening test for junior high school students. Psychological Testing, 54(2), 429-449. https://doi.org/10.7108/PT.200712.0429】
- 曹亮吉(1996)。阿草的葫蘆:文化活動中的數學。遠哲科學教育基金會。【Cao, L.-J. (1996). A-Cao’s gourd: Mathematics in cultural activities. Yuan T. Lee Foundation Science Education for All.】
- 曹亮吉(2003)。阿草的數學聖杯:探尋無所不在的胚騰。天下遠見。【Cao, L.-J. (2003). A-Cao’s holy grail of mathematics: Exploring the omnipresent patterns. CommonWealth.】
- 陳世文、古志雄、楊文金(2018)。從系統功能語言觀點探討科學詞彙的歧義與解歧。科學教育學刊,26(3),241-259。https://doi.org/10.6173/CJSE.201809_26(3).0003【Chen, S.-W., Ku, C.-H., & Yang, W.-G. (2018). Exploring lexical ambiguity and disambiguation of science terminologies from the lens of systemic functional linguistics. Chinese Journal of Science Education, 26(3), 241-259. https://doi.org/10.6173/CJSE.201809_26(3).0003】
- 陳世文、楊文金(2006)。以系統功能語言學探討學生對不同科學文本的閱讀理解。師大學報:科學教育類,51(1,2),107-124。https://doi.org/10.6300/JNTNU.2006.51.05【Chen, S.-W., & Yang W.-G. (2006). The impact of a systemic functional linguistics-based science text and a conventional science text on students’ reading comprehension. Journal of Taiwan Normal University: Mathematics & Science Education, 51(1, 2), 107-124. https://doi.org/10.6300/JNTNU.2006.51.05】
- 陳昭珍、宋曜廷、章瓊方、曾厚強(2020)。配合國小課程單元科普讀物人工分級推薦與系統可讀性分析之差異研究。圖書資訊學刊,18(1),45-67。https://doi.org/10.6182/jlis.202006_18(1).045【Chen, C.-C., Sung, Y.-T., Chang, C.-F., & Tseng, H.-C. (2020). Examining the differences of readability leveling of Chinese popular science books by experts and by CRIE system for elementary school children. Journal of Library and Information Studies, 18(1), 45-67. https://doi.org/10.6182/jlis.202006_18(1).045】
- 蘇慧珍、楊凱琳、陳佳陽(2017)。閱讀策略教學對高二學生數學學習表現的影響。教育科學研究期刊,62(1),33-58。https://doi.org/10.6209/JORIES.2017.62(1).02【Su, H.-C., Yang, K.-L., & Chen, C.-Y. (2017). Effects of teaching reading strategies on senior high school student’s mathematics performance. Journal of Research in Education Sciences, 62(1), 33-58. https://doi.org/10.6209/JORIES.2017.62(1).02】
- Adams, T. L., & Lowery, R. M. (2007). An analysis of children’s strategies for reading mathematics. Reading & Writing Quarterly, 23(2), 161-177. https://doi.org/10.1080/10573560601158479
- Ainsworth, S. (2014). The multiple representation principle in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (2nd ed., pp. 464-486). Cambridge University Press. https://doi.org/10.1017/CBO9781139547369.024
- Ayres, P., & Sweller, J. (2014). The split-attention principle in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (2nd ed., pp. 206-226). Cambridge University Press. https://doi.org/10.1017/CBO9781139547369.011
- Dee-Lucas, D., & Larkin, J. H. (1988). Novice rules for assessing importance in scientific texts.Journal of Memory and Language, 27(3), 288-308. https://doi.org/10.1016/0749-596X(88)90056-3
- Dee-Lucas, D., & Larkin, J. H. (1991). Equations in scientific proofs: Effects on comprehension.American Educational Research Journal, 28(3), 661-682. https://doi.org/10.3102/00028312028003661
- Epelboim, J., & Suppes, P. (2001). A model of eye movements and visual working memory during problem solving in geometry. Vision Research, 41(12), 1561-1574. https://doi.org/10.1016/S0042-6989(00)00256-X
- Hox, J. J., Moerbeek, M., & Van de Schoot, R. (2017). Multilevel analysis: Techniques and applications (3rd ed.). Routledge. https://doi.org/10.4324/9781315650982
- Jankvist, U. T. (2009). A categorization of the “whys” and “hows” of using history in mathematics education. Educational Studies in Mathematics, 71(3), 235-261. https://doi.org/10.1007/s10649-008-9174-9
- Kalyuga, S., & Sweller, J. (2014). The redundancy principle in multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (2nd ed., pp. 247-262). Cambridge University Press. https://doi.org/10.1017/CBO9781139547369.013
- Kolloffel, B., Eysink, T. H. S., de Jong, T., & Wilhelm, P. (2009). The effects of representational format on learning combinatorics from an interactive computer simulation. Instructional Science, 37(6), 503-517. https://doi.org/10.1007/s11251-008-9056-7
- Lee, W.-K., & Wu, C.-J. (2018). Eye movements in integrating geometric text and figure: Scanpaths and given-new effects. International Journal of Science and Mathematics Education, 16, 699-714. https://doi.org/10.1007/s10763-016-9790-2
- Leung, M., Low, R., & Sweller, J. (1997). Learning from equations or words. Instructional Science, 25(1), 37-70. https://doi.org/10.1023/A:1002969618881
- Lim, S. Y., & Chapman, E. (2015). Effects of using history as a tool to teach mathematics on students’ attitudes, anxiety, motivation and achievement in grade 11 classrooms. Educational Studies in Mathematics, 90(2), 189-212. https://doi.org/10.1007/s10649-015-9620-4
- Mayer, R. E. (2014). The Cambridge handbook of multimedia learning (2nd ed.). Cambridge University Press. https://doi.org/10.1017/CBO9781139547369
- Mayer, R. E., & Jackson, J. (2005). The case for coherence in scientific explanations: Quantitative details can hurt qualitative understanding. Journal of Experimental Psychology: Applied, 11(1), 13-18. https://doi.org/10.1037/1076-898X.11.1.13
- McNeish, D., & Stapleton, L. M. (2016). Modeling clustered data with very few clusters. Multivariate Behavioral Research, 51(4), 495-518. https://doi.org/10.1080/00273171.2016.1167008
- Niss, M. A. (2003). Mathematical competencies and the learning of mathematics: The Danish KOM project. In A. Gagatsis & S. Papastavridis (Eds.), 3rd mediterranean conference on mathematical education - Athens, Hellas 3-4-5 January 2003 (pp. 116-124). Hellenic Mathematical Society.
- O’Halloran, K. L. (1998). Classroom discourse in mathematics: A multisemiotic analysis. Linguistics and Education, 10(3), 359-388. https://doi.org/10.1016/S0898-5898(99)00013-3
- O’Halloran, K. L. (2008). Mathematical discourse: Language, symbolism and visual images. A & C Black.
- Österholm, M. (2006). Characterizing reading comprehension of mathematical texts. Educational Studies in Mathematics, 63(3), 325-346. https://doi.org/10.1007/s10649-005-9016-y
- Powell, S. R., Driver, M. K., Roberts, G., & Fall, A. M. (2017). An analysis of the mathematics vocabulary knowledge of third- and fifth-grade students: Connections to general vocabulary and mathematics computation. Learning and Individual Differences, 57, 22-32. https://doi.org/10.1016/j.lindif.2017.05.011
- Rau, M. A., Aleven, V., & Rummel, N. (2017). Supporting students in making sense of connections and in becoming perceptually fluent in making connections among multiple graphical representations. Journal of Educational Psychology, 109(3), 355-373. https://doi.org/10.1037/edu0000145
- Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods (2nd ed.). Sage.
- Schleppegrell, M. J. (2007). The linguistic challenges of mathematics teaching and learning: A research review. Reading & Writing Quarterly, 23(2), 139-159. https://doi.org/10.1080/10573560601158461
- Sim, J., & Wright, C. C. (2005). The kappa statistic in reliability studies: Use, interpretation, and sample size requirements.Physical Therapy, 85(3), 257-268. https://doi.org/10.1093/ptj/85.3.257
- Snijders, T. A. B., & Bosker, R. J. (2012). Multilevel analysis: An introduction to basic and advanced multilevel modeling (2nd ed.). Sage.
- Supovitz, J. A., MacGowan III, A., & Slattery, J. (1997). Assessing agreement: An examination of the interrater reliability of portfolio assessment in Rochester, New York. Educational Assessment, 4(3), 237-259. https://doi.org/10.1207/s15326977ea0403_4
- Tarmizi, R. A., & Sweller, J. (1988). Guidance during mathematical problem solving. Journal of Educational Psychology, 80(4), 424-436. https://doi.org/10.1037/0022-0663.80.4.424
- Watkins, A. E. (1979). The symbols and grammatical structures of mathematical English and the reading comprehension of college students. Journal for Research in Mathematics Education, 10(3), 216-218. https://doi.org/10.2307/748810
- Whitin, P., & Whitin, D. (2004). New visions for linking literature and mathematics. National Council of Teachers of Mathematics.
- Young-Loveridge, J. M. (2004). Effects on early numeracy of a program using number books and games. Early Childhood Research Quarterly, 19(1), 82-98. https://doi.org/10.1016/j.ecresq.2004.01.001
中文APA引文格式 | 吳昭容、鄭鈐華、張凌嘉(2021)。從算式或文字閱讀數學科普文章:共變數分析與階層線性模式的比較。教育科學研究期刊,66(1),107-139。https://doi.org/10.6209/JORIES.202103_66(1).0004
|
---|
APA Format | Wu, C.-J., Cheng, C.-H., & Chang, L.-C. (2021). Reading popular mathematics from equations or words: Comparison of analysis of covariance and hierarchical linear modeling. Journal of Research in Education Sciences, 66(1), 107-139. https://doi.org/10.6209/JORIES.202103_66(1).0004
|
---|
Journal directory listing - Volume 66 (2021) - Journal of Research in Education Sciences【66(1)】March
Reading Popular Mathematics from Equations or Words: Comparison of Analysis of Covariance and Hierarchical Linear Modeling
Author: Chao-Jung Wu (Department of Educational Psychology and Counseling, Institute for Research Excellence in Learning Sciences, National Taiwan Normal University), Chien-Hua Cheng (Department of Educational Psychology and Counseling, National Taiwan Normal University), Ling-Chia Chang (Department of Educational Psychology and Counseling, National Taiwan Normal University)
Vol.&No.:Vol. 66, No. 1
Date:March 2021
Pages:107-139
DOI:https://doi.org/10.6209/JORIES.202103_66(1).0004
Abstract:
Understanding mathematical reasoning is challenging. No conclusive evidence exists on which external representation is more beneficial to comprehension: equation or words. This study involved 299 high school students and examined the effects of external representations and participants’ abilities on reading comprehension of popular mathematics. Because students were nested within schools, analysis of covariance (ANCOVA) and hierarchical linear modeling (HLM) were performed, and their results were compared. The materials included three popular mathematics and comprehension tests, all of which were in the domain of geometry. The main difference between the equation version and the verbal version was the method of representation used in key sentences (only one, five, and five sentences differed in each of the three passages, respectively). The other sentences, illustrations, and tests were the same in both versions. Students were randomly assigned into groups for each of the two versions and completed the reading comprehension tests, reading comprehension screening tests, and math prior knowledge tests. The ANCOVA results demonstrated that the equation readers outperformed the verbal readers and that the high-ability readers performed better than the low-ability ones, but the results did not indicate any interaction between version and ability. After the exclusion of the effects of school-average math ability, the HLM results found that low-ability equation readers demonstrated a nonsignificant difference in performance compared with high-ability verbal readers. The benefits of using equations were discussed by comparing the linguistic features of the two external representations. Furthermore, the results were compared with previous research in terms of passage domain, cognitive load, focus of measurement, and participant characteristics.
Keywords:external representation, linguistics, popular mathematics, reading comprehension